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Project Components

Map & quantify recent changes in land-
cover/land-use in Pearl River Delta of China

Identify & model driving forces

Evaluate the effects of observed land change 
on regional terrestrial carbon cycle
– Dye, Hinchliffe & Woodcock, 2005, Asian J.

Geoinformatics, 5(3)5-11.



Study Area:
Pearl River (Zhujiang) Delta Region

Guandong Province, China
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Background
Economic Development as a Driver of 
Land Conversion in Pearl River Delta

Pearl River Delta (PRD) has experienced rapid rates of 
economic growth since late 1970’s
– Guandong GDP grew at avg. annual rate of 15.3% 

during 1985-1997
Economic development has spurred widespread land 
conversion
Most land conversion is from agriculture to urban
– Urban areas increased by >300% between 1988 and 

1996
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Land Cover Change in
Pearl River Delta Region
observed by Landsat TM

False color IR composites

Shenzhen,
Guangdong
1988-1996

1988

1989

1992 1993 1994

1995

1996

Shenzhen
1988-1996

Source: http://www.bu.edu/cees/NASA.html



Mapping & Quantifying Land 
Conversion in PRD Region

Optical remote sensing is used (Landsat TM)
Four map classes are identified by multidate Tasseled Cap
multispectral transformation:
– Water, urban, natural vegetation, agriculture

Classes reflect focus on land use change
Natural vegetation is primarily forest and shrubland
Change Detection Methodology
– Supervised classification of 23 land cover types



Land Use Change Map for Shenzen Region, 1988-1996

Seto, 
et al.



Net Land-Use Change
in Pearl River Delta Region, 1988-1996
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Research Questions

How has land-use change in the Pearl 
River Delta Region altered the regional 
carbon cycle?  
–Net primary production (g C yr-1)
–Ecosystem carbon stocks (g C)



Approaches to Quantifying Change
Spatially Explicit Mapping
– Change in carbon storage

Retrieval by remote sensing for aboveground C (radar,
lidar, optical) 
Field studies for belowground C

– Change in NPP
Modeling with satellite estimates of biophysical attributes 
& environmental conditions

– LAI, fPAR, incident PAR, soil moisture status,
phenological status, etc.

“Bookkeeping” Method (Houghton, etc.)
– Non-spatially explicit, category-based
– Representative values are assigned to classes (storage, NPP)
– Relies on reported data (forest inventories, field studies, etc.)



Methodology Summary for This Study
Bookkeeping Approach with NPP Modeling Based on 

Optical Remote Sensing

Land Use
Change
Vectors

Landsat TM
Images

1988-1996
Area (A)

Lost/Gained
Per Class (c)

Carbon Density
(Cd)

NPP rate Change
in total NPP

Change
in C Stock

(C)

Ac

Ac ⋅ NPPc = ∆ NPPtot,c

Ac ⋅ Cd,c = ∆ Cc

prior research*

2. Ecosystem Carbon Stocks

1. Net Primary Production

*Seto et al.

Modeling



Methodology 1: NPP Modeling
Radiation Use Efficiency Model
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Methodology 1:
Data Sources for NPP Model

Variable Source

FPAR
NDVI from AVHRR (Pathfinder)

Monthly composite, avg. 1988-1996,
8 km resolution (Agbu & James, 1994;empirical
relation from Ruimy et al., 1994)

S
PAR from Nimbus-7 TOMS

Monthly Avg., 1979-1989, 100 km res.
(Dye & Shibasaki, 1995)

ε
Literature Sources

(Peng and Zhang, 1995; Ruimy, 1994)



Methodology 1:
Data for NPP 
Model

NDVI, PAR 
sampled for 
pixels 
corresponding to  
Stable Land Use 
Classes



Methodology 1: NPP Modeling
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Methodology 2:
Carbon Stock Data Sources (Field Measurements)

Carbon Density (t C ha-1)

Land Use
Class

C Pool High Med Low Source

Phyto-
mass

178 107 36 Chen et al. (1992, 1993a,b,
1994); Peng and Zhang (1995)

NAT
Soils 122 87 53 Cai (1996)

Phyto-
mass

27 14 0.03 Atjay et al. (1977)

AGR
Soils 65 52 39 Cai (1996)



Methodology 2:
Estimating Soil Loss of Organic Carbon 
After Disturbance
Response of soil OC to land conversion is a gradual 
process (Schlesinger, 1997)
– Greatest proportion lost in first 1-3 years
– Full response can occur over 20+ years
– Varies with initial conditions and ultimate land 

cover/land use
Accurate accounting of soil OC emission after land 
conversion is major challenge
Poor data availability, especially for conversions to 
urban land uses



Methodology 2:
Estimating Soil Loss of Organic Carbon After 
Disturbance:  Two Key Assumptions
1. Direct NAT-to-URB conversion results in smaller average total 

loss of soil OC than for NAT-to-AGR conversion
30% assumed for total loss of soil OC from NAT soils after conversion 

to URB (Cai, 1996; Bowman et al., 1990; Schlesinger et al., 2000)
Includes losses from initial disturbance and subsequent losses at slower 
rate

2. AGR-to-URB conversion induces a loss of soil OC that is much 
smaller than original NAT-to-AGR conversion

No quantitative data found in literature at time of this study
Assume small but nontrivial loss is initially incurred with 
urban construction
Subsequent loss is impeded by impervious surfaces
Additional loss of soil OC from AGR-to-URB conversion 
assumed at 5%



Results



Change in Regional Total NPP

NAT
AGR

45.4%
54.6%

Results 1:
Effects of Land Use Change on Regional 
NPP
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Results 2:
Change in C Stocks from Land Use Change

Median Estimate of
Gross C Emission

Total 11.9 Mt C
(6.1% of C stock)

Emission by Carbon Pool
Phytomass 9.6 Mt C (81%)
Soils 2.3 Mt C (19%)

Emission by Land Use Class
NAT 10.1 Mt C (85%)
AGR 1.8 Mt C (15%)

Gross Carbon Emission

phytomass NAT

phytomass AGR 

soils NAT

soils AGR

68.1%

12.9%

16.5%

2.45%



Normalized Annual Gross C Emissions from
Fossil Fuels & Land-Use Change:

Global vs. Pearl River Delta Region

Fossil Fuel C Emission is Dominant Source in PR Region
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Conclusions (1 of 3)
Land use change in PRD region during 1988-1996 
had substantial effect on regional C cycle:
– NPP: -1.6 Mt C yr-1 (-7.5%) (median)
– Carbon stocks: -11.9 Mt C (-7.5%) (median)

Dominance of urbanization implies:
– low potential for ecosystem recovery by secondary 

growth
– reduced capacity for C sequestration

Offset of emission from land conversion depends 
on
– C sinks outside PRD region
– Reduced fossil fuel emission within the region



Conclusions (2 of 3)

C emission may be estimated with higher 
confidence through:
– Spatially explicit modeling/analysis approach
– More sophisticated process modeling (e.g.

SimCYCLE / VISIT)
However, implementation often limited by poor 
data availability 

E.g., soil OC storage and emission from 
urbanization process
Aboveground biomass



Developing Improved Observing Systems for Monitoring 
and Quantifying Changes in Terrestrial Carbon Cycle

Requires synergistic application of optical, SAR, and 
LIDAR observations
– Improved direct retrieval of

vegetation biophysical properties (LAI, fPAR, height, 
density, biomass)
environmental variables (PAR, soil moisture, etc.)

– Accounting for spatial gradients (within class variability) in 
land cover properties 

Current, GEOSS-related research at JAMSTEC-
FRCGC is aimed at these objectives

Conclusions (3 of 3)



Improved Satellite Monitoring of
Larch Forest LAI in Siberia

- Comparison of satellite-observed reflectance with 
ground-based LAI ⇒Three-step estimation algorithm 
based on Normalized Difference Water Index (NDWI)

- Theoretical investigation by radiative transfer 
simulation

- Algorithm development
- Production of 10-years datasets (1998-2007) 
- Validation of the satellite-derived larch canopy LAI

Larch canopy LAI map over Siberia

Validation with existing datasets

We have developed the most reliable canopy LAI datasets among 
the global LAI products through the following steps

Three-
step 

estima
tion 

algori
thm

H. Kobayashi, N. Delbart & R. Suzuki



Improved Satellite Monitoring of Grassland LAI & Biomass

Improved LAI & Biomass Estimation
Using time-series satellite data and 
ground survey, reliable monitoring of 
grassland LAI/Biomass is started at two 
different spatial scales 

Regional scale
(Qinghai-Tibetan Plateau)

Continental scale (Asia)

August 13, 2007 SPOT

[g DW/m2]

H. Kobayashi & T. Kato

Grazing
Effect



Completed forest survey for  the 
biomass estimation algorithm 
based on ALOS/PALSAR 
measurement in Alaska
← Biomass (dried matter 
ton/ha) at 29 forests in Alaska.

Sample image of ALOS/PALSAR

ALOS: 
(Advanced Land Observing Satellite)

R. Suzuki & R. Ishii

Data Set Development
FOREST BIOMASS 

ESTIMATION & 
MAPPING with RADAR



Phimai, Thailand

Putussibau, 
Indonesia,

Pontianak,
Indonesia 

Sapporo, Japan 

Haibei, China

Ulanbator, Mongolia
(potential)

Lambir Hills, Malaysia
(potential)

Yokohama, Japan (planned)

Tsukuba, Japan (planned)

Sulawesi, Indonesia
(potential)

Sumatra, Indonesia
(potential)

Balik Papan,
Indonesia

(from 2/2008)

Chiang Mai, Thailand
(potential)

Haibei, 
Qinghai, 
China
37.61 
N,101.38 E

Phimai, 
Nakhon 
Ratchasima, 
Thailand
15.18 N, 
102.57 E

Pontianak, 
West 
Kalimantan,
Indonesia
0.08 N, 109.191 
E

Putussibau, 
West 
Kalimantan, 
Indonesia
0.84 N, 112.94 
E

Development of an Asian PAR Sensor Network 
for Ecosystem Process Studies
• validation of satellite PAR estimates
• improved understanding of atmosphere-radiation

photosynthesis  relations
• improved carbon cycle modeling

Data Set Development & Modeling

D. Dye, in 
collaboration with 
IORGC, Chula. U., 

BPPT



Thank you



Potential Gross C Emission from Land Use 
Change in Equivalent Areas of Major 

Biomes

Biome figures based on Watson et al. (2000)
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NPP Model Validation

Model Estimates vs.
Reported Values
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rainy season

Climate Conditions at Guangzhou
Long-term monthly average temp., precip, & VPD
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Methodology 1:
NPP Modeling
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Global Atmospheric Carbon Budget 
1850-1990

Source:
R. Houghton et 
al.,
Woods Hole 
Research Center





Annual Carbon Emissions from 
Human Activities, 1850-1990

Houghton (2000)





Landsat Observations of Land Cover Change
in the Zhu Jiang Delta Region, PRC

QuickTime™ and a
Cinepak decompressor

are needed to see this picture.

Shenzhen,
Guangdong
1988-1996



Carbon Emission Trends in China from
Land Use Change & Fossil Fuel Consumption

1950-1990+
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Global Carbon Cycle

Schimel et al.
(2000)



Estimating the Net C Flux
from Land Use Change in PRD

Net flux from global land use change was 40% 
of gross flux in 1990 (Houghton, 2000)
C emission estimates from this study are gross
fluxes (regrowth not included).
Urbanization is dominant in PRD, therefore:
– C accumulation is low
– net flux will approach gross flux
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