

crc for spatial information

DERIVING VEGETATION PARAMETERS AND FOREST STRUCTURAL INFORMATION FROM AIRBORNE RADAR SYSTEMS

Tony Milne,

Professor, School of Biological, Earth and Environmental Science, UNSW,

Science Manager, Remote Sensing, CRC-Spatial Information,

Second GEOSS Asia-Pacific Symposium: The Role of Earth Observations in Tackling Climatic Change, Tokyo, April 14-16, 2008

Radar Wavelength and Backscatter

Polarimetric SAR

Analysing the polarisation state of an electromagnetic field

Highly related to –

- Geometrical shape, structure, orientation and reflecting properties, and,
- Geophysical properties such as surface roughness and moisture content of objects and surfaces.

Target recognition and detection of both point and distributed objects

PolinSAR

The phase difference between two or more image data sets acquired from similar or the same SAR separated spatially by a short distance gives information on topography and with multiple datasets, changes in topography or height.

Measure height, displacement and motion

AuSAR - INGARA D.S.T.O (Aus) DC3 (97) KingAir 350 (00) Beach 1900C X-Band (Quad)

AES1

AeroSensing (D)

ESAR

DLR (D)

PHARUS

TNO - FEL (NL)

RENE

UVSQ / CETP (F)

Ø IETR

POLARIMETRIC SAR SENSORS

SHUTTLE / SPACEBORNE SENSORS

SIR-C NASA / JPL (USA)

ENVISAT / ASAR ESA (EU)

RADARSAT 2 CSA - MDA (CA)

MEMPHIS / AER II-PAMIR

EMISAR DCRS (DK)

PISAR

NASDA / CRL (J)

STORM

UVSQ / CETP (F)

E. Pottier, L. Ferro-Famil (01/2004)

AIRSAR

NASA / JPL (USA)

FGAN (D)

RAMSES ONERA (F)

SAR580 Environnement Canada (CA)

BMBF / DLR / ASTRIUM

AIRSAR

Polsar - C, L and P-band Topsar - C and P- band

- 46 flight days over a 3-month period, 21st July to 23rd Oct.
- 15 bases in 9 countries
- 648 flight lines collected at 201 sites in 18 countries & territories
- 54,623 km of flight-line data

AIRSAR Deployment, Aug-Oct, 2000

Scientific Objectives

Compiled and edited by:

Ian Tapley CRC LEME, CSIRO Exploration and Mining, Western Australia 6913

> Tony Milne University of New South Wales, Sydney, NSW 2052

> > Ellen O'Leary Jet Propulsion Laboratory, Pasadena, Ca

> > > UNSV

AIRSAR data provided to >400 PI's from 20 PacRim countries in 3 missions

- Forestry and vegetation
- Agriculture
- Coastal analysis
- Geology & tectonic processes
- Interferometry
- Disaster management
- Urban & regional development

Define the impact of mine waste dispersions on the biodiversity of the Fly River flood-plain ecosystem, PNG

Mapping and inventory of mangrove and wetland vegetation communities in tropical regions

Are radar data suitable for defining the biomass and species composition of mangrove populations under threat from environmental impacts?

Thailand - AIRSAR bands Cvv/Lhh/Phv (RGB)

Land-cover mapping, crop inventory and agricultural practices

Coastal Pannay, Philippines – detecting the replacement of mangroves with aqua-culture. Kedah, Malaysia – radar's sensitivity to vegetation types and density permits the mapping of rice paddy-fields, rubber and palm-oil plantations.

Tonle Sap Great Lake

Reconstruction of the Angkorian habitat, 9-16th century

Reconstruction of the Angkorian habitat, 9-16th century

ASTER coverage (Bands 2:3:1 RGB) of wetland site adjacent to Lake Tonle Sap, with the locations of AIRSAR field sites discussed in this study. These ASTER data were collected on 10th January 2002.

Closed canopy forest trees (Top) and open canopy forest trees with patches of shrubland and open water (Bottom)

Flooded grasslands

Original classification

Original data Cvv/Lhv/Pvv

Segmentation: Mean values Cvv, Lhv, Pvv

Radar signatures: Cvv, Lhv and Pvv

Final classification

Wetland classification – super classes

Class 1: Water Class 2: Flooded fields / grasslands Class 3: Macrophytes Class 4: Shrubland Class 5: Forest trees Class 6: Irrigated ricefields Class 7: Non-stuff

Remote Sensing Data Acquisition: Injune

AIRSAR (POLSAR) data

- 4 strips of NASA JPL AIRSAR data acquired (12.5 x 80 km)
- Full range of forest types.
- Incidence angle variation from ~ 30° to 60°.
- Fully polarimetric – HH, VV and HV.

Biomass Mapping Using Empirical Relationships, Injune, Queensland

FPC layer

P-band HH

Identifying woody regrowth and tree mortality

Foliage Projected Cover

ALOS PALSAR L-band HH

SAR Observations of Brigalow-dominated regrowth

a) C-band, b) L-band and c) P-band backscatter (HV, VV and HH in RGB) data illustrating reduced return from Brigalow-dominated regrowth with decreasing frequency.

SAR Observations of Brigalow-dominated regrowth

C-band

L-band

P-band

Reduced return from Brigalow-dominated regrowth with decreasing frequency

Areas of Brigalow particularly prominent (red) in Total Power image (C-band in red)

Woody regrowth mapping using AIRSAR and JERS-1 SAR

2000 AIRSAR (C-, L- and P- band Total Power in RGB) Classification of Woody regrowth Using L-band HH and 2000 FPC

1995 JERS-1 SAR with 1995 Landsat FPC (in R) Map of woody Regrowth (mainly Brigalow; orange), Non-forest (blue) And forest (green)

Comparisons with Queensland Statewide Land Cover and Trees (SLATS) datasets

SLATS Time-series

FPC

(4 dates)/FPC

JERS-1 SAR L-HH (Sigma0)

CASI (bands 14,9,1)

DEM (tree height)

West Alligator Mangroves

Species/ Community Differentiation

IERS-1 SAR allows some differentiation of nangrove zones.

Difference in main Communities can occur

nconsistencies in lassification

GeoSAR

GeoSAR Components

- Two P-band antennas
- 20m / 40m dual baseline

- Two X-band antennas
- Antenna Positioning Measurement Unit

Flight Characteristics

GeoSAR Product Characteristics

	X-band	P-band		
DEM height accuracy Single swath	0.5-1.2 m (Relative)	1-3 m (Relative)		
Mosaic	~1.0 m (Absolute)	1-4 m (Absolute)		
DEM resolution	2.5 - 5 metres	2.5 - 5 metres		
Planimetric Accuracy	1 m (Relative)	2 m @ 5 km Altitude (Absolute)		
	< 2.5 m (Absolute)	4 m @ 10 km Altitude (Absolute)		
Ground swath	12 -14 km on each side	12 -14 km on each side		
Polarization	VV	HH and HV or VV and VH		
Pixel Size	1.25 – 3m	1.25 – 5m		

Multi-swath mosaicking and application of Lidar ground measurements results in considerable improvement over single-swath accuracy.

Four Standard Products of GeoSAR

P-band

X-band

HG

Shaded relief models of X and P-band DEMs – Andean foothills, Colombia

GeoSAR DEMs - suppression of vegetation

P-DEM

RGB composite P:X:P IFSAR data

Distance (meters)

1.25m X- and P-band Radar Orchards for trails, irrigation patters, drainages exposed in Pband

Capable of counting trees in orchards

Papua New Guinea

Air strip and associated man-made features, Colombia, South America

Colombia, 2006

Radar colorized though image processing of band combinations

Makeshift airfield revealed in P-band

Airfield – Kupiano, PNG

Redundancy Processing

AIRSAR MULTI-BAND DATA

All-bands subset analysis

Cvv	Lhh	Lvv	Lhv	Phh	Pvv	100%	
CVW	Lvv	l hv	Dhh	Dvoz		05.1	
			FIII			93.1	
				F V V Dhh		93.0	
			LIIV	Phili		92.4	
CVV	LNN	LVV	Pnn	PVV		00.0	
Cvv	Lvv	Lhv	Pvv			87.9	
Cvv	Lvv	Lhv	Phh			87.5	
Cvv	Lhh	Lvv	Pvv			81.3	
Cvv	Lhv	Phh	Pvv			80.7	
Cvv	Lhh	Lhv	Pvv			80.6	
Cvv	Lhh	Lvv	Phh			80.4	
Суу	Lhy	F vv				73.2	
Cvv	Lvv	Lhv	(ENVISA	T / RADARSA	T and ALOS)	72.2	
Ϲ៴៴	Lvv	Phh				71.1	
Cvv	Lhv	Phh				70.4	
Cvv	Lhh	Ρνν				68.2	
Cvv	Lvv	Pvv				67.1	
Cvv	Phh					54.1	
Cvv	Lhv					53.9	
Cvv	Lhh					52.0	
Cvv	Pvv					51.6	
Cvv	Lvv					50.7	
Lhv	Pvv					50.1	
Lhv	(ALOS-P	ALSAR)				31.2	
Lhh	(ALOS-P	ALSAR)				29.3	
Phh						28.8	
Lvv	(ALOS-P	ALSAR)				28.0	
Cvv	(ENVISA	T-ASAR, RAD	ARSAT)			27.0	
Pvv						25.7	

73.2%

3D model of AIRSAR bands Phh/Lped/Cvv (RGB) overlaid on TOPSAR DEM

Thank You

