

Collection of global baseline datasets for REDD -The ALOS Systematic Observation Strategy

Ake Rosenqvist (JRC IES-GEM) Masanobu Shimada, Takeo Tadono (JAXA EORC) Manabu Watanabe (Tohoku Univ.)

2nd GEOSS-AP Symposium. Tokyo, Japan, April 14-16, 2008

The ALOS mission features a systematic observation strategy which comprises fixed global observation plans for all three instruments.

The strategy is implemented as a top-level foreground mission and with a priority level second only to that of emergency observations.

Additional user requests are accepted, but alignment with the default observation modes for each sensor strongly recommended.

The observation strategy is developed by JAXA EORC to provide

- Global wall-to-wall coverage
 - Fine resolution
 - Spatially consistent (no gaps)
 - Temporally consistent (regions acquired within 1-2 cycles)
- on a repetitive basis
 - Multi-seasonal (winter+summer / dry+rainy)
 - Multi-annual (mission-long; assessment/revision after 3 years)
- For each of the three sensors (PALSAR,

Aims:

- Creation of a comprehensive and homogeneous global archive of PALSAR, PRISM and AVNIR-2 data, in which a consistent time-series of fine resolution data can be found for any arbitrary area or extended region on Earth.
- Minimizing programming conflicts

Additional user requests (scientific and commercial via the ALOS Data Nodes, ALOS PI programme, etc.) are scheduled on a routine basis, but alignment with the default observation modes for each sensor is strongly recommended to improve success rate and avoid conflicts.

PRISM & AVNIR-2 default modes

Cycle #	Start date	PRISM	AVNIR-2
7	20-Oct-06	+ 1.2°	Nadir
8	5-Dec-06	- 1.2°	Nadir
9	20-Jan-07	+ 1.2°	Nadir
10	7-Mar-07	- 1.2°	Nadir
11	22-Apr-07	+ 1.2°	Nadir
12	7-Jun-07	- 1.2°	Nadir
13	23-Jul-07	+ 1.2°	Nadir
14	7-Sep-07	- 1.2°	Nadir
15	23-Oct-07	+ 1.2°	Nadir
16	8-Dec-07	- 1.2°	Nadir
17	23-Jan-08	+ 1.2°	Nadir
18	9-Mar-08	- 1.2°	Nadir
19	24-Apr-08	+ 1.2°	Nadir
20	9-Jun-08	- 1.2°	Nadir
21	25-Jul-08	+ 1.2°	Nadir
22	9-Sep-08	- 1.2°	Nadir
23	25-Oct-08	+ 1.2°	Nadir
24	10-Dec-08	- 1.2°	Nadir
25	25-Jan-09	+ 1.2°	Nadir

<u>PRISM</u>

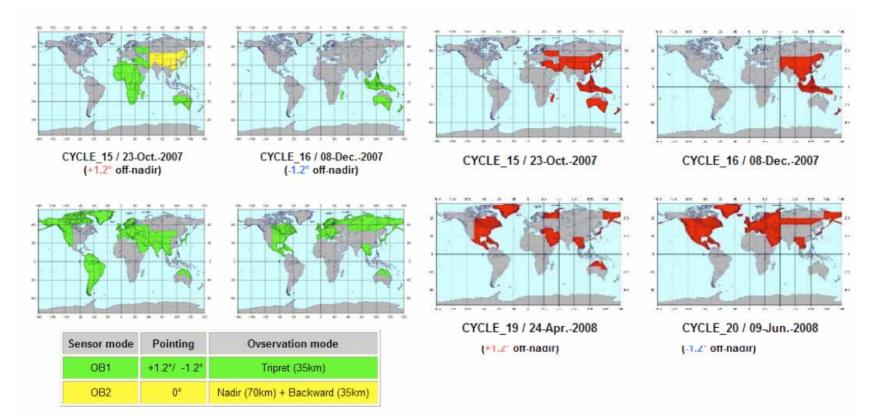
- 3-telescope (triplet) mode
 - 35-km swath
 - Alternate viewing
 - +/- 1.2 ° (across

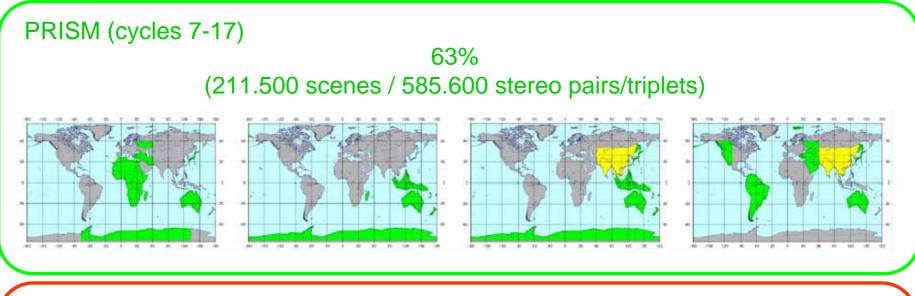
track)

- Odd cycles: +1.2 °
- Even cycles: -1.2 °
- 2-telescope mode

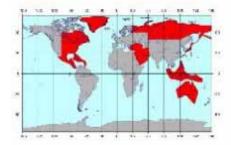
 (nadir & backward)
 70 km & 35 km swath

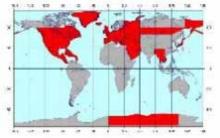
AVNIR-2


• Nadir viewing mode


Aim:

• One global coverage per year for each sensor


Timing based on cloud statistics, seasonality and sun elevation



AVNIR-2 (cycles 7-17)

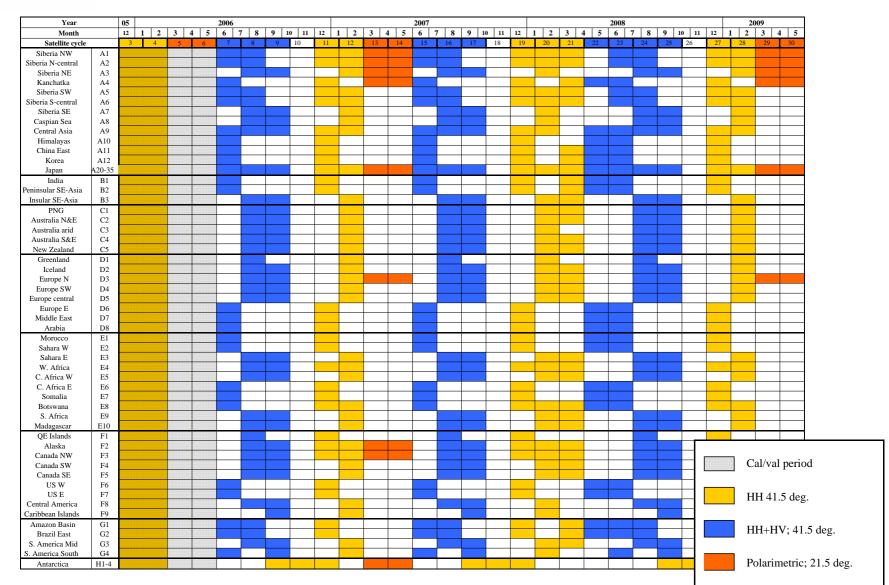
76% (139.300 scenes)

PALSAR - 4 default modes

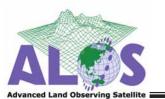
Cycle #	Start date	PALSAR										
Cycle #	Start uate	Ascending	Descending									
8	5-Dec-06	HH 34.3°	ScanSAR HH									
9	20-Jan-07	HH 34.3°	ScanSAR HH									
10	7-Mar-07	POL 21.5°	ScanSAR HH									
11	22-Apr-07	POL 21.5°	ScanSAR HH									
12	7-Jun-07	HH+HV 34.3°	ScanSAR HH									
13	23-Jul-07	HH+HV 34.3°	ScanSAR HH									
14	7-Sep-07	HH+HV 34.3°	ScanSAR HH									
15	23-Oct-07	Any mode	ScanSAR HH									
16	8-Dec-07	HH 34.3°	ScanSAR HH									
17	23-Jan-08	HH 34.3°	ScanSAR HH									
18	9-Mar-08	HH 34.3°	ScanSAR HH									
19	24-Apr-08	HH+HV 34.3°	ScanSAR HH									
20	9-Jun-08	HH+HV 34.3°	ScanSAR HH									
21	25-Jul-08	HH+HV 34.3°	ScanSAR HH									
22	9-Sep-08	HH+HV 34.3°	ScanSAR HH									
23	25-Oct-08	Any mode	ScanSAR HH									
24	10-Dec-08	HH 34.3°	ScanSAR HH									
25	25-Jan-09	HH 34.3°	ScanSAR HH									
26	12-Mar-09	POL 21.5°	ScanSAR HH									
27	27-Apr-09	POL 21.5°	ScanSAR HH									

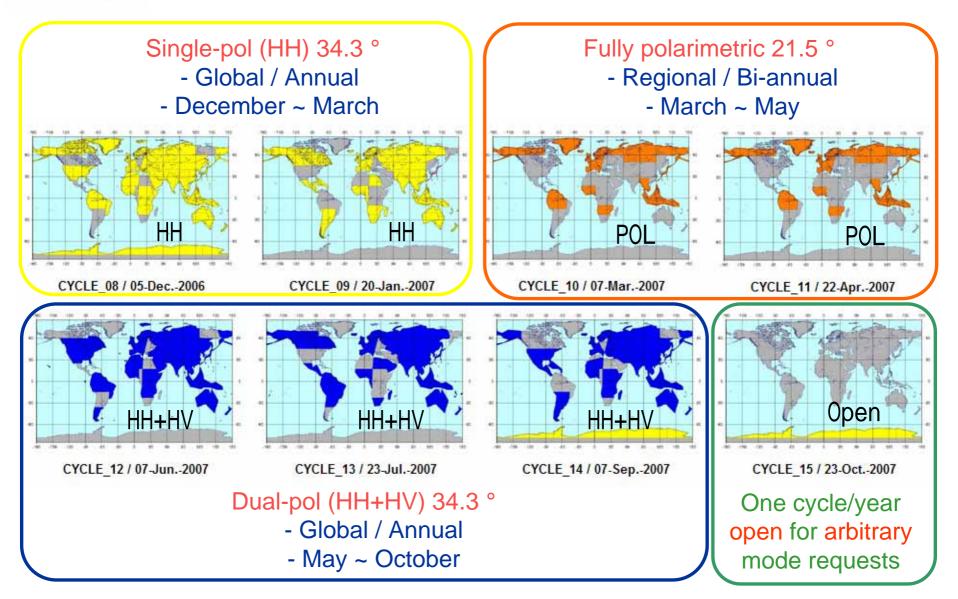
Ascending obs. (10.30 pm)

- Single-pol (HH) 34.3 °
 - Global / Annual
 - December ~ March
- Dual-pol (HH+HV) 34.3 °
 Global / Annual
 - May ~ October
- Fully polarimetric 21.5 °
 - Regional / Bi-annual
 - March ~ May


One cycle/year open for arbitrary mode requests

Descending obs. (10.30 am)

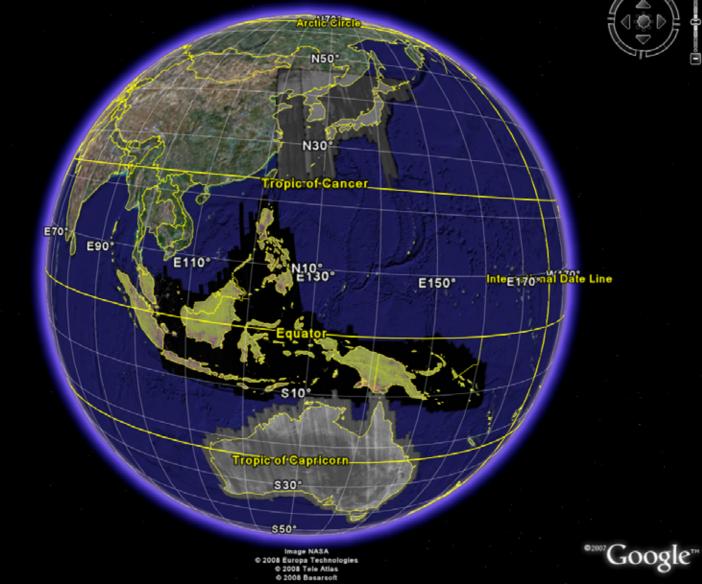

- ScanSAR (HH) 5-beam
- Global / Annual
- Regional / every cycle



ALOS Acquisition Strategy PALSAR Fine resolution

PALSAR Ascending (pm) observations

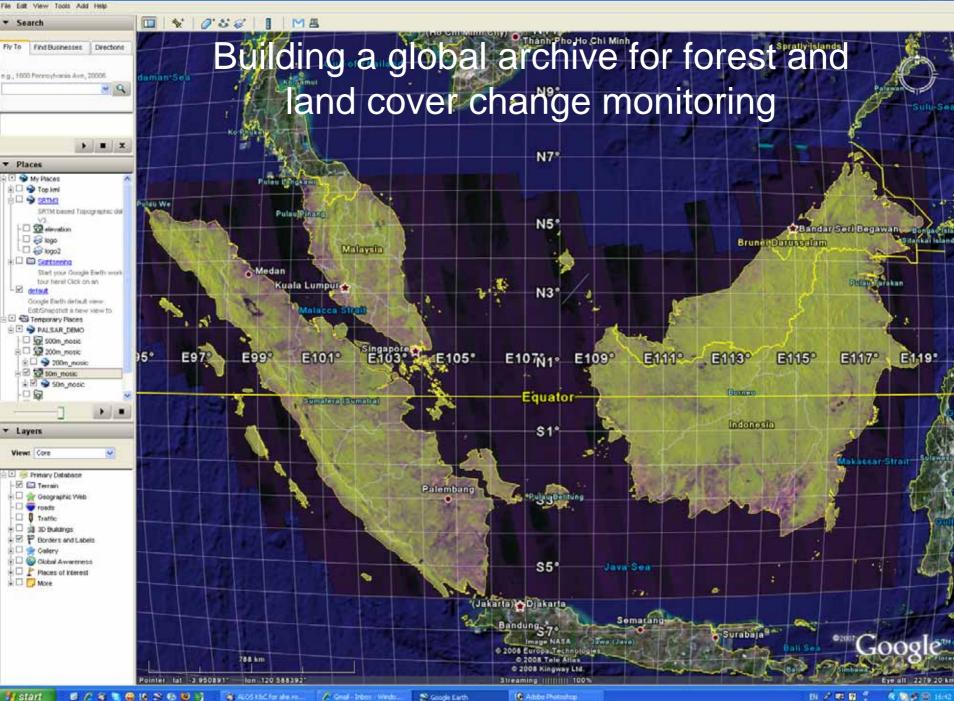
Building a global archive for forest and land cover change monitoring


Building a global archive for forest and land cover change monitoring

Building a global archive for forest and land cover change monitoring

Building a global archive for forest and land cover change monitoring

Building a global archive for forest and land cover change monitoring


Building a global archive for forest and land cover change monitoring

Streaming ||||||||| 100%

Eye all 11784.92 km

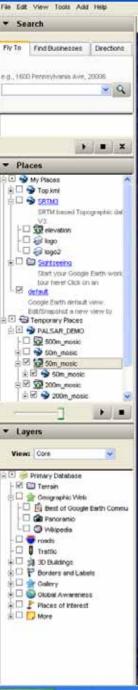
😂 Google Earth

.

038

487 km

lon 101 301023*


Const - Inber - Winds

🔊 Google Earth

ALOS KEC for all mo...

Pointer lat 0.341007*

0 / 6 % 0 0 % 2 6 0 1

📲 start

Building a global archive for forest and land cover change monitoring

Image NASA

Image © 2008 TerraMetrics Streaming |||||||| 100%

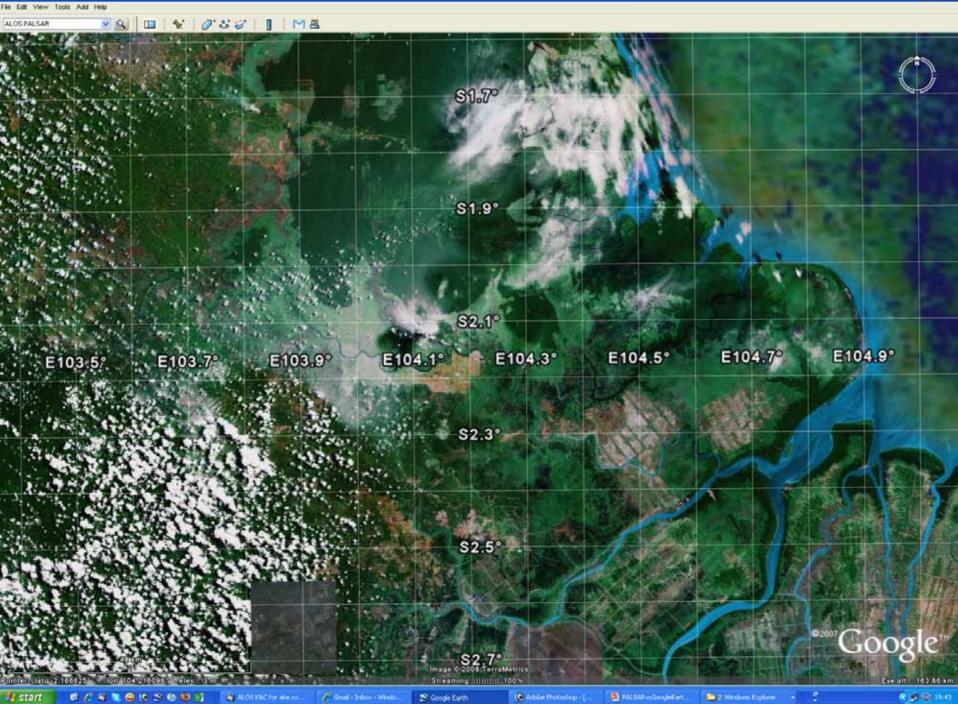
🕼 Adoler Photochop - [... 🚯 Microsoft PowerPoint

2 Windows Explana •

Eye alt 1517.81 km

™Google™

655 18 km



E10

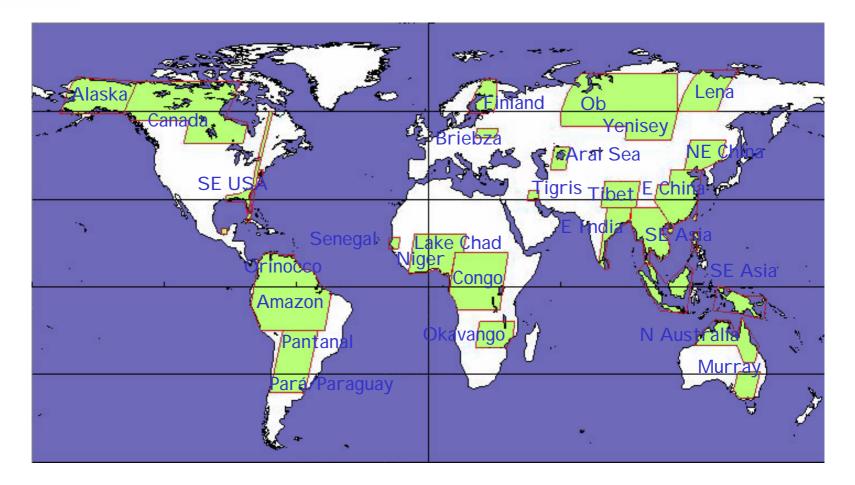
331.21 km

Show Sideba Building a global archive for forest and land coverschange monitoring S2. \$2.3° \$2.5° S2.7 E104.7° E105.5° E105.9° E105.1° E104.3° 102.9E103.1° E103.9° E103.5° \$2.9° \$3.1° \$3.3° \$3.5° TOWN COUNTER A STORE MARTIN ANA DATA \$3.7° Goog m reciliasia

📕 start 2 6 9 S Google Earth Preserviced -PALSARVOGO. Presentation? 100 🌈 Grad - Inbo

1 start

Y Q


Building a global archive for forest and land coverschange monitoring 144.7 \$2.5 \$2.7° E104.9° E105.1° E105.3° E105.5° E104.7° E104.1° E104.3° E104.5 \$2.9° S3.1° 6000 Lee alt 163 66 km 2 6 9 S Google Earth 🕼 Adobe Photoshop - [PALSAR In Completion 2 Windows Explore ALOSIGIC for all an

File Drowser Drushes

Building a global archive for forest and land cover change monitoring

Intensive monitoring wetlands

Advanced Land Observing Satellite

100 m ScanSAR Every cycle (46 days) during 12 months

ALOS PALSAR 2007-02-21

Sec.

Est

ALOS PALSAR 2007-03-22

m

Test.

ALOS PALSAR 2007-05-24

ALOS PALSAR 2007-07-09

ALOS PALSAR 2007-08-24

ALOS PALSAR 2007-10-09

Est

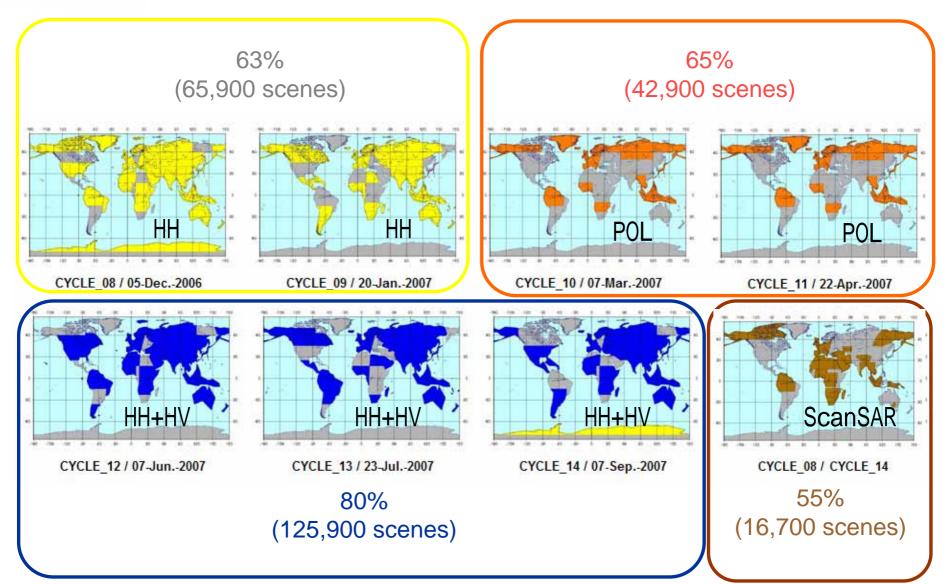
ALOS PALSAR 2007-11-24

Este

ALOS PALSAR 2008-01-09

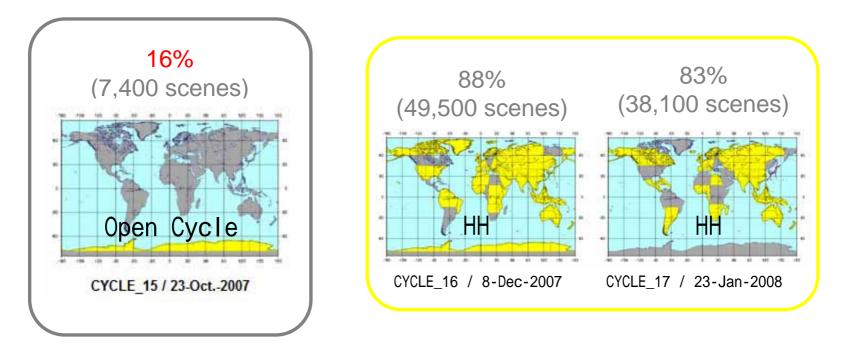
Es?

ALOS PALSAR 2008-02-24


Effect of La Niña Significant increase in precipitation in Dec-2007/Jan-2008

ALOS PALSAR 2007-02-21

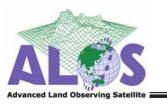
Effect of La Niña Significant increase in precipitation in Dec-2007/Jan-2008

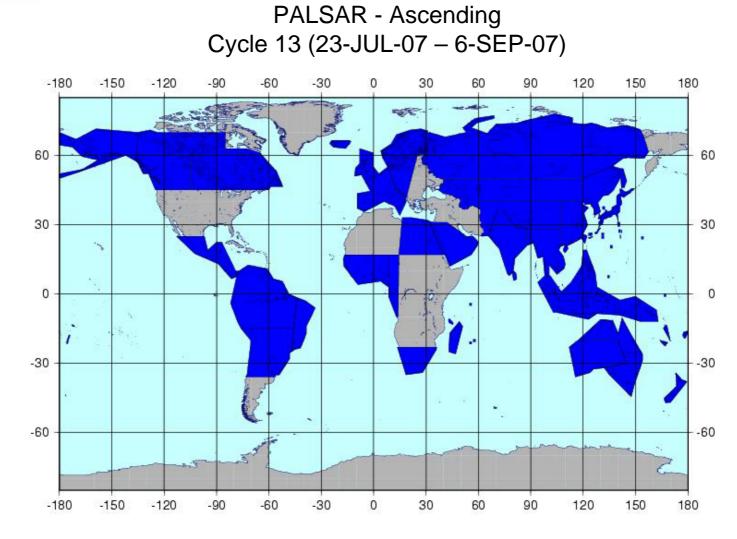


PALSAR Observation results

Highlighting the importance of systematic observation planning:

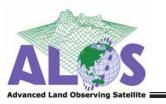
During the "open cycle" (23/10 - 7/12/2007) - when no fixed observation mode was applied and users - acquisition success rate decreased to 16% (47,500 scenes requested, 7,400 scenes acquired)

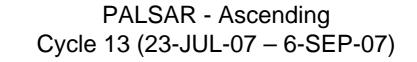

Systematic wall-to-wall acquisitions for ALOS provide first-of-the-kind consistent fine resolution global baseline coverage at a repetitive basis. It is a pre-requisite for credible and reliable REDD monitoring support.

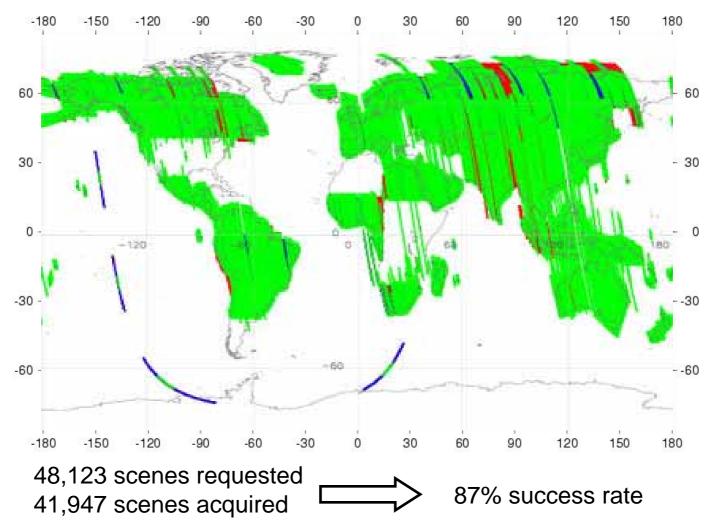

Tentative plans to continue acquisition strategy until ALOS EOL. Should be endorsed by GEO.

ALOS follow-on will be dedicated to diaster AND forest/wetlands monitoring. New acquisition strategy very likely. Should be endorsed by GEO.

Acquisition synergy with other missions advantageous for all space agencies. Should be endorsed by GEO.

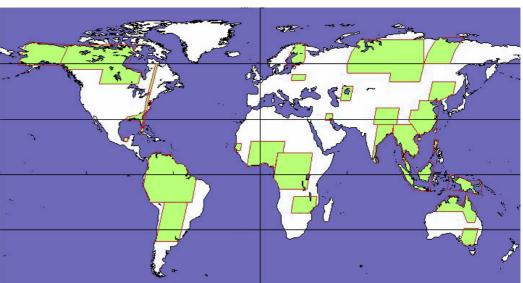

Planned observations





Default mode: HH+HV 34.3°

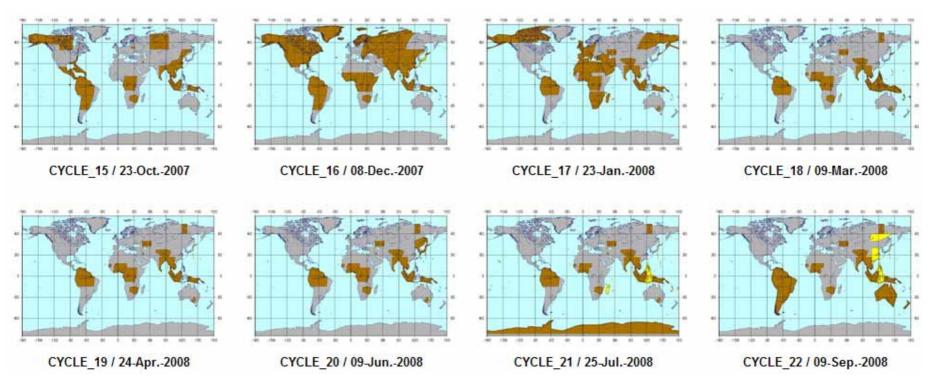
Actual observations



ALOS Acquisition Strategy PALSAR Descending

Descending (~10 am):

* PALSAR acquired in ScanSAR (5-beam mode, HH) * Focus on wetland & CH4 intensive monitoring



PALSAR Wetlands monitoring																								
Year	2006		2007											2008			2009							
Month	11	12	1 2	3	4 5	6	7 8	9 1	0 11	12	1 2	3	4 5	6	7 8	9 1	0 11	12	1 2	3	4 5	6	7 8	9
Satellite cycle	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
West Siberia																								
Lena Delta																								
Volga Delta																								
Amur																								
East China paddy																								
Tibet																								
India paddy																								
Mainland SE-Asia																								
Insular SE-Asia																								
Luzon																								
New Guinea																								
North Australia																								
Murray-Darling																								
Finland																								Ļ'
Pripet-Biebrza																								Ļ'
Tigris marshes			L	L		 															L		ļ'	ļ'
Niber Basin			L	L																	L		ļ'	└── ′
Congo Basin																							ļ'	──′
Okavango-Mozambique																					<u> </u>	<u> </u>	<u> </u>	──′
Senegal wetlands ASF mask																						<u> </u>	 	──′
Canada W						-				-						<u> </u>		—					├ ────	───┦
Quebec-Everglades						-	_	-	-	-									-				├ ────	├ ──┤
SE USA																	<u> </u>			+		<u> </u>	───	──′
Mexico																						<u> </u>	┝───┤	├ ──┤
Amazon Basin																								
Pantanal																			_					
r antanan																								

PALSAR Descending (am) observations

- ScanSAR (HH) 5-beam
- Global / Annual
- Regional / every cycle

PRISM & AVNIR-2 first priority in descending mode. To minimise sensor conflicts, only every 3rd ScanSAR pass scheduled (overlap still >50%).