Introduction of Three-dimensional digital analysis of aerial photographs and Phenology monitoring camera system

Hiroyuki Oguma National Institute for Environmental Studies

On site scale remote sensing;

1.Phenology monitoring by spectral observation

2. Three-dimensional digital analysis of aerial photographs

Reflectance of vegetation canopy

red and blue light are absorbed for photosynthesis

Spectrum measurement by Hemispherical Spectro-radiometer and camera

development of a new algorithm
verification of vegetation products obtained from earth observation satellite

MS-131 (2000 ~ 2002)

MS-700 (2003 ~)

CCD video camera

ADFC (automatic digital fish-eye camera)

PEN Phenological Eyes Network

Seasonal variation in NDVI at the PEN site

Japanese larch

Japanese Larch and dwarf bamboo

Japanese cypress

Development of Spectral Imager

Hemispherical Spectro-radiometer

Natural forest

- All weather
- Low cost
- Easy operation
- Battery or Solar battery operation

Phenology Camera is required

Multi Spectral Phenology Camera (Prototype)

False color image

NDVI image

False color image

R: Near-infrared G: Red B: Green

NDVI image

False color image

R: Near-infrared G: Red B: Green

Three-dimensional digital analysis of aerial photographs

Larch tree

Tomakomai CO₂ Flux research site

Observed area with airborne LiDAR in Japan

How can we get to understand the state of the past forest?

Three-dimensional digital analysis of aerial photographs

Digital Surface Model (DSM) produced from the aerial photograph of one pair

elevation

2002

1967

Extraction of the change of DSM in Satoyama-Village forest DSM₂₀₀₂-DSM₁₉₆₇

Red shows canopy crown growth and blue shows deforestation

Difference between 2002 and 1967 of DSM

The method of DCHM (Digital Canopy Height Model) calculation

DSM(Digital Surface Model)

provided by aerial photograph analysis

DCHM(Digital Canopy Height Model) = D S M - D T M

DTM (Digital Terrain Model)

provided by Geographical Survey Institute or LiDAR survey

DCHM image in 1967

DCHM image in 2002

Canopy height change from 1946 to 2002

Colored image by DCHM in 1946

20m

Colored image by DCHM in 1967

20m

Colored image by DCHM in 2002

20m

Conclusion

•The Multi Spectral Phenology Cameras of Prototype will be installed in several JaLTER sites, and be checked their usefulness.

•The new phenology camera which can photograph both true visible color and nearinfrared will be developed.

•Precise DTM is required in order to calculate change of the canopy height from the past more correctly.

苫小牧タワーサイトにおける分光・熱画像観測

サーマルカメラ NEC TH3100

視野角:約15° 最小検知温度:0.08 測定精度:±1.2 測定波長域 8~13µm

ハイパースペクトルカメラ

Specim ImSpector V10

視野角: 30 ° 波長幅: 400 ~ 1000 nm サンプリング幅: 4.4 nm **2地点の画像情報を連続撮影** (2007年6月~)

対照区

地温上昇区

可視~近赤外域の分光反射情報と葉の生理機能

DCHM変動パターンによる土地被覆変遷の抽出手法の開発

1967.2002年における
被覆変化をクラス分け

期首(1967年)クラス	期末(2002年)クラス	色	意味
凹地/エラー地	凹地/エラー地		非森林
	平地		非森林
	低木		森林化
	高木		森林化
平地	凹地/エラー地		非森林
	平地		非森林
	低木		森林化
	高木		森林化
低木	凹地/エラー地		非森林化
	平地		非森林化
	低木		森林
	高木		成長
高木	凹地/エラー地		非森林化
	平地		非森林化
	低木		森林
	高木		森林

DCHM変化を元にした土地利用変遷図
航空写真の三次元解析における従来手法とデジタル解析の比較

景観再生の試み

各年次のオルソ画像を三次化し、更に各年次の樹高値を算出し、 樹高の高低を緑 黄によってカラー化した画像

柳川

0m

0m

1946年

1967年

三次元化データの精度検証(平地)

三次元化データの精度検証(林地)

2002年の秦野盆地全域のDSM (Digital Surface Model: 表面高)

0 0.5 1 2 Km

ステレオマッチングのエラー (汎用ソフトは万能ではない)

マッチングパラメータの最適化、自動選択
複数のステレオマッチング結果の自動選択
エラーの検出

写真解析技術としての研究課題

解析図化機による検証

1967年

サイト	最大差分(- m)	最大差分(+ m)	平均(m)	標準偏差(m)
А	-19.8	15.1	0.01	2.3
В	-7.7	15.2	2.2	4.2
С	-20.1	12.3	0.2	2.0

サイト	最大差分 (- m)	最大差分 (+ m)	平均(m)	標準偏差(m)
А	-14.7	6.7	-1.3	2.4
В	-13.5	17.3	0.9	3.2
С	-14.4	13.9	-1.0	2.8

PEN

Phenological Eyes Network

Phenology, carbon & water flux, aerosol (yellow sands etc.), spectral reflectance, leaf area (LAI), PAR, FPAR, etc.

HSSR (hemispherical spectro-radiometer)

Installation in MSE

Automatic-capturing Digital Fish-eye Camera (ADFC)

(NIKON Coolpix4300 + FC-8 Fisheye Converter)

Hemispherical Spectro-radiometer (HSSR)

(Eko MS-700; 350nm-1100nm; 256bands)

Example: Mase site (paddy), 2005

Example: Mase site (paddy), 2005-2006

Example: check of satellite index at Mase site (paddy)

MODIS data vs. ground data: spectrum

Leaf area index (LAI):

litter traps

LAI-2000

TRAC

Monitoring of shoots and leaves

leaf spectrum

leaf physiology

Tree Height Monitoring by LiDAR

Average (left) and Histogram (right) of tree height obtained by laser survey

分光反射率の算出方法

対象エリア

- ・里地里山保全再生モデル事業対象地(環境省) ・地理院撮影の150mmレンズ
- ・土地被覆が多様(傾斜地、平地、農地、都市・・・・)

NDVIの変動が表すパラメータは?

苫小牧フラックスリサーチサイトにおけるカラマツ樹冠上分光計測結果 (2000年~2004年)

苫小牧フラックスリサーチサイト(北海道) 北緯42度44分、東経141度31分 対象 ニホンカラマツ(Larix kaempferi Sarg.) 樹高;18~20m、樹齢;約45年

<figure>

Airborne Lidar Systems

(Light Detection And Ranging)

Ground measured NDVI and MODIS NDVI

- Tower

× MODIS

TOMAKOMAI

FUJI

神奈川県秦野市の里山の変化(寺山地区 1946 1967 1983 1988 2002年

We need ground data for validation of ecology remote sensing.

Systematic error due to cloud, aerosol, sensor angle, sun angle, etc., within a single satellite sensor.

Difference in overpass-time, band setting, etc. among multiple sensor.

We need stable, long-term, multi-site ground datasets to mitigate these problems.

Because ecosystem is always changing!

A network of the ground sites for data collection of these purposes:

|| "Phenological Eyes Network (PEN)"

Change of DSM for 50 years

1946 1967

1967 2002

The aerial photograph in 1946 was taken by the U.S. Forces.

