9th Meeting of the GEOSS Asian Water Cycle Initiative (AWCI) International Coordination Group (ICG)

Climate Change Impact Assessment and Adaptation in Uzbekistan

Irina Dergacheva NIGMI of Uzhydromet
E-mail: nigmi@albatros.uz
Change of climate indicators on the territory of Uzbekistan

Change of mid-annual temperature across Uzbekistan

Deviation from norm

Since 1950 0.29°C for a ten years

Change of the annual sums of precipitations across Uzbekistan

Percent from norm

Change of extreme maximum and minimum temperatures (the Fergana valley)

Change in the number of precipitation (>mm) days in certain foothill stations

Number of days

- T_{max90}
- T_{min90}

- Samarkand
- Tashkent
Assessment of maximum and minimum temperatures trends ($\Delta T_r/\sigma$) throughout Uzbekistan since 1938

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Season</th>
<th>Northern</th>
<th>Central</th>
<th>Southern</th>
<th>Foothills</th>
<th>Mountains</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tyan-Shan</td>
</tr>
<tr>
<td>T_{min}</td>
<td>Winter</td>
<td>0.97</td>
<td>0.77</td>
<td>0.51</td>
<td>0.85</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>1.46</td>
<td>1.38</td>
<td>1.31</td>
<td>1.16</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>2.45</td>
<td>2.25</td>
<td>2.60</td>
<td>1.95</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>Autumn</td>
<td>1.86</td>
<td>2.23</td>
<td>2.17</td>
<td>1.72</td>
<td>1.50</td>
</tr>
<tr>
<td>T_{max}</td>
<td>Winter</td>
<td>0.13</td>
<td>0.08</td>
<td>0.14</td>
<td>0.13</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>0.53</td>
<td>0.41</td>
<td>0.35</td>
<td>0.34</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>0.38</td>
<td>0.42</td>
<td>0.22</td>
<td>0.31</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>Autumn</td>
<td>0.72</td>
<td>0.54</td>
<td>0.72</td>
<td>0.60</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Long-term changes of the snow reserves estimated for the end March

Changes of the glacier areas (km2), calculated via various methods
<table>
<thead>
<tr>
<th>Climate Change impact</th>
<th>Factors reducing adaptive capacity</th>
<th>Adaptation measures to Climate Change</th>
</tr>
</thead>
</table>
| Reduction of available water resources | Inadequate monitoring of water resources in the area of their intensive utilization | **Management and monitoring**
Introduction of the system of water resource integrated management via involvement of all concerned parties and its tailoring with the land resource management |
| Enhancement of runoff variation in time and space | Low progress of agricultural reforms | **Improvement of the system of the water recording and quality management**
Improvement of hydro-ecological monitoring |
| Water quality deterioration | Limited financial and poor technical capacities | **Enhancement of the knowledge and skills of sustainable management** |
| Change of annual runoff allocation (shift of hydrograph peak to the earlier dates) | Insufficient investment attraction | |
| Runoff reduction in vegetation period | Water use disagreement in transboundary context | |
| Increase of irrevocable losses in irrigation areas | | **Introduction of control systems**
Ensuring of the strict recording of the water resource allocation and reporting, control over their utilization in all economic sectors
Maintenance of the stable level of the water supply of the country and economic sectors with consideration of transboundary nature of the key water resources |
| Water consumption increase in irrigated farming and the other water use branches (evaporation growth, increase of irrigated rates) | | **Institutional development**
Institutional development in the field of water use and water consumption
Support in implementation of the number of agricultural reforms and enhancement of the role of WUAs and FAs
Improvement of the legal and institutional principles in the private farms’ formation and development |
| Water consumption increase in the industry and public water supply | | **Development of legal mechanisms**
Development of comprehensive system of integrated water-land resource management including formation of organizational-legal, economic mechanisms of the water-land relation control, water and land protection and rational utilization
Development of new version of Law RUz “On water and water use” with consideration of transition to the market relations and principles of water use and WUAs development
Development of incentive system for the farmers, in particular, in terms of procurement and price formation policy |

Sectoral measures
Development of the public water consumption system, water pipe-line system rehabilitation and installation of the water flow meters for all users
Transition to the closed-recycling water supply system in the industry and power sector
Information needs and gaps

1. **Disadvantages ground monitoring network**

 In Central Asia, is insufficiently developed system of ground observation network of hydrological objects that pose a threat, especially this fact is important to consider the cross-border effects of hazardous hydrological phenomena. For example, the breakthrough of glacial lakes, the occurrences of mudflow occur in one country, but the effect is manifested in the neighboring countries and leads to significant damage. At the same time to monitor the country is not economically profitable, since the observing system expensive.

 In this regard, it needs to develop monitoring systems, having a structure of cooperation between the countries. In this regard, regional cooperation under the umbrella of international organizations is of great perspective and desperately needed.

2. **Communication links between the countries**

 In Central Asian countries are now the communication system is based on telephone transmission lines. In this case, the system alerts when a hazard is too slow relative to place hazards. There is great risk that the alert system using a telephone connection may be too late for timely action. Moreover, the very phone lines may be disrupted as a result of the impact hazard. In this regard, it is imperative to establish exchange of information through the satellite system of information exchange with the study of technical issues.

3. **High resolution satellite images with real time access**

 In Central Asia there are many potentially dangerous and developing objects - glacial lakes and out breaking lakes, and monitoring are difficult because of inaccessibility.

 System monitoring of glacial lakes to the Central Asian countries need access to high resolution satellite images for early prediction of the risk of a dangerous situation. Satellite imagery has the advantage that they can be used to monitor hazards to neighboring countries.
Analysis of the current variability of extreme hydrometeorological phenomena (probability of occurrence, duration of hazardous period by the territory) and their after-effects for vulnerability assessment.

Future risk assessment in line with the Climate Scenarios and application of the advanced methods and tools.

Development of the large-scale maps of the current and future risk for individual phenomena in line with the needs of the sectors (construction, transportation, recreation area, etc.) for identification the high risk areas.

Assessment of potential of the hazardous phenomena risk reduction via improvement of forecasting and warning.
Thank you for your attention!