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How Can WPMs Help:       
Answering the Questions 

related to Food Security?                           



•  Water use Assessments and Food Security: World population is increasing by about 90 
million per year, calorie intake has increased to 2,800 calories per person per day (from 2255 in 1961). 
Global croplands are increasing at much slower phase. Irrigated areas have nearly stagnated, 
environmental issues related to irrigated areas have come to sharp focus, salinization and siltation of 
reservoirs a  major concern……so where is the extra food going to come from?. 

•  Change in Trends in Global Croplands: Croplands are turned to areas for bio-fuels, 
consumption trends are changing (e.g., more fruits and vegetables), grain areas decreasing…… 

•  Climate change impact on Croplands: (e.g., droughts in Australia); 
•  Alternative demands for water use: increasing urbanization, industries, recreation, environmental flows; 
•  Global scenario studies: Irrigated areas-water use-food production-population growth-virtual water trade. 

Corn for bio-fuels? More vegetables and fruits China alone grain production went down equivalent 
to entire Canada’s harvest over last decade 

Can we feed 10+ billion by 2050? 
Account for increasing consumption + waste 

Water Productivity Mapping using Remote Sensing (WPM)            

Need, Scope, Context 



Can we grow more crop with less water?; 

Can we grow more crop with less land? 

Can we continue to feed the world with 
same amount of land and water as of now 
and if so how long?, If not what 
alternatives do we have? 

…….first, we need to understand where we more WP………and 
where we have less WP………then we need to measure WP, 
map WP………then we will be ready to understand it and 
start looking for solutions…… 

Water Productivity Mapping (WPM) using Remote Sensing                                        
Questions Related to WP that WPMs can answer 
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Uzbekistan 

Irrigated area 

Water Productivity Mapping using Remote Sensing (WPM)  
 The Syr Darya River Basin, Central Asia 

Classic Large Scale Soviet Era Irrigation 



Methods of WPM 
using Remote Sensing 



I. Crop productivity (kg\m2) maps (CPMs) 
•  Crop type mapping; 
•  Spectra-biophysical\yield modeling; 
•  Extrapolation to larger areas; 

II. Water use (m3\m2) maps (WUMs) or ETactual 
•  simplified surface energy balance (SSEB) 

model; 

III. Water productivity (kg\m3) maps (WPMs). 
********************************************************* 
A. Factors affecting water productivity. 

The study involved 3 major steps leading to water 
productivity maps (WPMs): 

Water Productivity Mapping using Remote Sensing (WPM)             
Methods 



1.0 Crop Croductivity Mapping 

WPM Methods 



Methods of WPM: 1.0 Crop Type Mapping                                        
Crop Types Mapped using Multi-Date Landsat ETM+ 30m Data 



Variable Unit Collecting  
method 

Sample  
size 

Mean  
value 

Sample  
size 

Mean  
value 

Sample  
size 

Mean  
value 

Sample  
size 

Mean  
value 

A. General Cotton Cotton Wheat Wheat Maize Maize Rice Rice 
Coordinate degree Hand-held GPS 585 - 191 - 116 - 43 - 
Soil type - Eye observation 15 - 15 - 6 - 2 - 
B. Crop variables for spectro-biophysical\Yield modeling 
NDVI - NDVI camera 566 0.487 166 0.622 105 0.571 43 0.602 
PAR µmol m-2s-1 LAI meter 580 1060 174 1029 105 960.429 38 957.868 
Leaf area index - LAI meter 580 1.338 173 2.057 105 1.204 38 2.84 
Wet biomass kg/m2 Cut and counting 577 1.801 172 1.499 108 2.186 37 2.166 
Dry biomass kg/m2 Cut and counting 575 0.772 172 0.563 106 0.994 37 0.884 
Crop height mm Ruler 576 453 172 569.535 108 920.88 41 610.244 
Soil cover % Eye estimation 585 61.753 175 30.144 113 49.301 42 8.2 
Canopy cover % Eye estimation 585 34.087 173 58.035 113 36.451 42 69.78 
Yield ton/ha Laboratory 45 2.109 45 3.495 18 2.983 6 4.523 
C. Variables to study the factors affecting Water Productivity 
EC dS/m EM-38a  315 106.567 48 91.077 62 110.279 26 79.933 
Soil moisture % Laboratory (weight) 36 12.55 9 16.9 15 11.95 6 18 
Crop density plant/m2 Cut and counting 577 21.133 172 253.837 97 18.213 39 343.077 
Weed cover % Eye estimation 585 5.025 173 12.922 108 14.426 42 10.595 
Water cover % Eye estimation 585 3.51 173 0.556 108 0.01 42 13.738 
Crop health grading Eye estimation 572 3.164 172 3.291 108 3.231 41 3.78 
Crop vigor grading Eye estimation 573 3.004 172 3.087 108 3.028 41 3.61 
D. Meteorological variables for plant water use estimations or ET calculations 
Air temperature Selsius degree Automated weather  5798 22.1 
Relative humidity % stationb 5798 50 
Wind direction degree (February-October) 5798 169.8 
Wind Speed KM/h 5798 1.38 
Rainfall mm 5798 151.8 
E. Water applied measurements 
Irrigation 

application mm Weirs 5 293 2 80.57 4 158.9 4 355.2 
Note: a = Average value of vertical and horizontal EC. 
          b = the "watchdog" automated weather station was set up in Galaba site and the weather data was used for all crops.   

2.0 WPM RS: Spectro-Biophysical Modeling Process                                          
Field-plot Data: Variables, Sample size, and Mean Values of the Variables 
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2.0 Spectro-Biophysical\Yield Models                                                              
Continuous Spectra of Irrigated Cotton Crop @ different Growth Stage  



Spectro-biophysical and yield models. The best models for determining biomass, LAI and yield of 5 

crops using IRS LISS and Quickbird data (5-10% points sieved) 
Best bands Best indices 

Crop Parameter Sensor sample  
size Best model band  R-square Best model band  

combination R-square 
Cotton Wet Biomass IRS 140 Exp 2 0.697  Power 2, 3 0.834  

QB 41 Multi-linear 1, 4 0.813 Multi-linear 1,4; 3,4 0.506 
Dry Biomass IRS 136 Power 2 0.620  Power 2, 3 0.821  

QB 41 Exp 2 0.521 Exp 1, 2 0.661  
LAI IRS 135 Multi-linear 3, 4 0.634  Power 1, 3 0.725 

QB 41 Multi-linear 2, 4 0.511 Quadratic 2, 4 0.574  
Yield IRSA 14 Linear 2, 3 0.753  

QBB 7 Linear 3, 4 0.610  
Wheat Wet Biomass IRS 9 Quadratic 2 0.425 Quadratic 1, 3 0.678 

Dry Biomass IRS 14 Quadratic 1 0.205 Quadratic 3, 4 0.309 
LAI IRS 18 Quadratic 4 0.8 Multi-linear 1,3; 2,3 0.465 

Yield IRS 12 Linear 2, 3 0.67 
MaizeD Wet Biomass IRS 19 Power 2 0.815 Power 2, 3 0.871  

Dry Biomass IRS 17 Exp 2 0.928 Power 2, 3 0.903 
LAI IRS 19 Multi-linear 1, 3 0.777 Multi-linear 1,2; 2,3 0.839 

RiceE Wet Biomass QB 10 Multi-linear 1, 2 0.535 Multi-linear 1,2; 2,4 0.600 
Dry Biomass QB 10 Multi-linear 1, 2 0.395 Multi-linear 1,3; 2,3 0.414 

LAI QB 10 Multi-linear 2, 4 0.879 Quadratic 2, 3 0.234 
Alfalfa Wet Biomass IRS 21 Power 2 0.838 Quadratic 1, 2 0.853 

QB 8 Multi-linear 2, 4 0.772 Multi-linear 1,2; 2,3; 3,4 0.887 
Dry Biomass IRS 21 Power 2 0.817 Exp 1, 2 0.812 

QB 8 Multi-linear 2, 4 0.732 Multi-linear 1,2; 2,3; 3,4 0.867 
LAI IRS 21 Power 3 0.499 Exp 3, 4 0.639 

QB 8 Multi-linear 1, 3, 4 0.927 Multi-linear 1,3; 3,4 0.858 
A, Yield model using 2007 data 
B, Yield model using 2006 data 
C, ∑NDVI camera is the accumulated NDVI derived using the hand hold NDVI camera for field data 
during 2006  
D, Sample points of data from Quickbird for maize was inadequate 
E, Sample points of data from IRS for rice was inadequate 

Note: 

2.0 Spectro-Biophysical\Yield Models using IRS LISS 23.5m and Quickbird 2.44m Data                                                            
Best Model R2 values and Waveband combinations 



Note: * the cotton yield model uses September 4, 2007 IRS LISS image. 

2.0 Spectro-Biophysical\Yield Models                                                              
Illustrative Examples for Cotton Crop Variables versus IRS LISS 23.5 m Data  



The yield - NDVI correlation was applied to all pixels, classified as 
cotton, inside the study area, to model cotton productivity (Figure 5). 

Figure 5 

3.0 Extrapolation of Spectro-Biophysical\Yield Model understanding                                  
to Larger Areas using Landsat ETM+ 30m Data 
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3.0 Extrapolation of Spectro-Biophysical\Yield Model understanding                                  
to Larger Areas using IRS 23.5m Data 

Cotton crop, 
Galaba study 
area and its 
surroundings 



2.0 Water Use or ETactual (m3) 



Actual evapotranspiration (ET) is calculated as 
the residual of the difference between the net 
radiation to the surface and losses due to the 

sensible heat flux (energy used to heat the air) 
and ground heat flux (energy stored in the soil 

and vegetation). 

LE  = Rn - G  - H     
LE = Latent heat flux (energy consumed by ET) (W/m2) 
Rn =  Net radiation at the surface (W/m2) 
G   = Ground heat flux (W/m2) 
H  = Sensible heat flux (W/m2) 

Methods of WPM: 4.0 Water use or ETactual                                            
ETactual Theory (Surface Energy balance Models)   



1. Surface energy balance models (SEBAL); 
2. Mapping Evapotranspiration with high 

resolution and internalized calibration 
(METRIX): 

3. Simplified Surface Energy balance Model 
(SEBAL); 

4. Water applied (direct inflow and outflow 
measurement); 

5. Water balance equations. 

Methods of WPM: 4.0 Water use or ETactual                                            
Different Methods of Determining ETactual 



ETact – the actual Evapotranspiration, mm. 

ETfrac – the evaporative fraction, 0-1, unitless. 

ET0 – reference ET, mm. 

Tx – the Land Surface Temperature (LST) of pixel x from thermal data. 

TH/TC – the LST of hottest/coldest  pixels. 

Water use is determined by multiplying Evaporative fraction by reference ET  

Methods of WPM: 4.0 Water use or ETactual                                            
Simplified Surface Energy Balance Model (SSEBM) Approach 



x =  ET act 

Hot Pixel (Thot) 

Cold Pixel (Tcold) 

ET fraction Map (based on ETM+ thermal data)  Reference ET map (based on long-term met data ) 

               Thot - Tx 
ET frac = ---------------------  
                       Thot - Tcold 

ET act = ET frac * ET ref 

(Senay et al., 2005) 

SSEBM for ETactual or water use of Crops                                                 
4.1 Step 3 : ETactual 

ET ref (penman-monteith) 

Step 3: Determining ETactual  



The raster layers of surface temperature, calculated from each Landsat 
ETM+ image were used for ET fraction modeling (Figure 6) by applying 
Simplified Surface Energy Balance (SSEB) model (see section 6.1). 

Figure 6 

SSEBM for ETactual or water use of Crops                                                 
4.1 Step 1 : ETfraction using Landsat ETM+ Thermal Data 

Galaba 
Study Area 

in Syr Darya, 
Uzbekistan 

using 
Landsat 
ETM+ 

Thermal 
Data 



Figure 10 

4.0 Water Use or ETactual                                                                                    
Water Use or ETactual = ETfraction * ETreference 

Galaba Study Area in Syr Darya, Uzbekistan using Landsat ETM+ Thermal Data 



3.0 Water Productivity Maps (WPM) 



           Crop Productivity 
  WP =   ------------------------ 
                   Water use 

WP is crop water productivity (kg/m3)/($/m3)  
Crop Productivity in units of Biomass (kg/m2) or Yield (tonn/ha) or Value ($/ha) 
Water use is seasonal actual ET (thousand m3/ha)  

NDVI – Normalized Difference Vegetation Index (-), from satellite images: 

   NDVI = (NIR – Red) / (NIR + Red) 

NIR and Red are  reflectance in near-infrared and red bands 

Crop Productivity = f (NDVI) 

Water Productivity Mapping (WPM) using Remote Sensing                                                                                  
Increase Water Productivity of Existing Croplands  

The best bet scenario is to 
continue to produce more 
(increase water productivity) 
food from existing croplands 
and water 



Cotton water productivity (kg\m3) map (Figure 11) is determined by 
dividing crop productivity (tonn\ha) map (Figure 5) by water use 
(thousands m3\ha) map (Figure 10). 

Figure 11 

Methods of Water Productivity Mapping (WPM) using Remote Sensing                   
WPM of Agricultural Croplands  

Galaba 
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6.0 How Can WPM Pin-Point 
Areas of Low and High WP 

Helping us focus on growing 
more food from available land 

and water 



WPM using IRS LISS 23.5 m and Quickbird 4 m 

IRS Quickbird 
group area (ha) share (%) area (ha) share (%) 
0-0.1 167.9 4.1 85.1 1.8 

0.1-0.2 695.5 16.8 970.2 21.0 
0.2-0.3 1421.0 34.4 1550.7 33.5 
0.3-0.4 1381.7 33.4 1370.0 29.6 
0.4-0.5 414.7 10.0 542.7 11.7 
0.5-0.6 50.3 1.2 93.0 2.0 

 >0.6 2.4 0.1 17.9 0.4 

Mean Min Max Range No. Pixels 

IRS 0.285 0 0.70 0.7 74850 

QB 0.289 0 1.06 1.06 7776175 
Unit: kg/m3 

IRS QB 

  Kg/m3   Kg/m3 

Water Productivity Mapping (WPM) using Remote Sensing                                        
WPM of Agricultural Croplands  

Galaba Study 
Area in Syr 

Darya, 
Uzbekistan 
using IRS 
23.5m and 

Quickbird 4 m 
data 



6.0 Water Productivity Maps pin-pointing Areas of Low and High WP                                                                                
Opportunities to Grow More Food from Existing Lands 

Legend 

<0.3       55% 
0.3-0.4   33% 
>0.4       12% 

Kg/m3 

……here is an huge 
opportunity to grow 
more food from existing 
land and water 
resources................. 
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Quickbird 2.44m NDVI (2007-207) 

Quickbird 2.44m NDVI (2007-207) 

Water Productivity Mapping (WPM) using Remote Sensing                                        
Studying 3 Irrigated Cotton Fields using Quickbird 2.44 m Data 

Quickbird 2.44m NDVI (2007-207) 

……what is important to note is the 
spatial variability within field……..indeed, 
about 50% of the field has low 
productivity………..if we can increase 
spatial variability through better land and 
water management, we can afford to feed 
increasing populations (that are also 
more consuming) with available land and 
water……..  

The trends in 
spatial variability 
in Quickbird 
2.44m (this slide) 
and IRS LISS 
23.5m (next 
slide) are similar. 



4.0 Factors Affecting 
Water Productivity 



7.0 Factors Affecting WP                                                                                           
Degree of influence of Various factors on WP variations within and between field as 

measured during field work 

Land leveling 

Weeds  6% 

Salinity 

Water deficit 

43% 

31% 

14% 

7% 

Water logging 



F3 

F4 

F5 

All spectra 

F3 

F4 

F5 

Jul 26 2006 

Yield: 1.21 t/ha 
Soil salinity: 3 (high) 
Worst field 
Biomass –  0.29 kg/m² 
LAI – 1.12 M²/m² 

Yield: 1.8 t/ha 
Soil Salinity: 2 
Moderate field 
Biomass : 0.53  kg/m² 
LAI : 2.23 M²/m² 

Yield: 2.74 t/ha 
Soil salinity: nill 
Best field 
Biomass: 1.53 kg/m² 
LAI : 2.82  M²/m² 

5.2 Factors Affecting Water Productivity (WP)                                        
Soil Salinity Variations Captured using Spectral data 



1.54 billion Hectares of total croplands at the end of the last millennium 

Water Productivity Mapping (WPM) using Remote Sensing                                        
WPM of Irrigated and Rainfed Croplands of the World 

…………..let us pin-point to areas in the world where there is mediul or low 
WP in irrigated and\or rainfed croplands………..here is an opportunity for us 
to push for an world where we use same (and even better less) water and 
land than we currently use but continue to produce more food…………. 



Conclusions 



1.  WPM methods and protocols established using Multi-
resolution RS: methods to highlight areas of high and low WP 
is developed using remote sensing. Establishing WP variations 
can help determine areas of low and high water productivity. 
This will help us to focus on areas of low WP and establish 
causes for the same. Once this is achieved strategies can be 
developed to increase WP of these areas; 

3.  Low WP areas dominate: Results showed that WP of the 
irrigated cotton crop (the most dominant crop in the Syr Darya 
river basin) varied between 0-0.6 kg\m3. Of this only 11 percent 
of the cotton crop area was in 0.4 kg\m3 or higher WP. About 
55% of the cotton area had <0.3 kg\m3. The results had similar 
trends for rice, maize, and wheat.  

4.  Scope for increased WP: The results imply that there is highly 
significant scope to increase WP (to grow more food from 
existing land and water resources) through better management 
practices. The challenge is to increase land and water 
productivity of the 55% of the areas. If we can achieve that, 
food security of future generations can be secured without 
having to increase croplands and\or greater water use.  

Water Productivity Mapping (WPM) using Remote Sensing            

Conclusions 



1.  Cropland areas + crop types + geographic precision + irrigated areas + 
irrigation source (e.g., informal): reduce uncertainty 

high spatial resolution + time-series MODIS + field-plot data 

2.        Water use by croplands: reduce uncertainty 
Surface energy balance models 

3.  Water productivity mapping: pin-point areas of low and high WP 
RS + modeling 

4.  Food security, water security, environmental security: based on above 
From step 1 to 3 

Water Productivity Mapping (WPM) using Remote Sensing            
Research Opportunity to Make a Difference 

Global perspective 



Further Reading 
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3 peer-reviewed journal papers (2 published + 1 in review) + 1 poster + this 
presentation 


