Water Productivity Mapping using Remote Sensing to solve Global Food Crisis

Productivity and determine Factors Affecting Them

science for a changing world

Research Geographer, U.S. Geological Survey (USGS), Flagstaff, Arizona

obal Earth Observing System of Systems (GEOSS) Asian Pacific Symposium. Kyoto, Japan. February 5, 2009.

How Can WPMs Help: Answering the Questions related to Food Security?

GIAN

GMRCA

Water Productivity Mapping using Remote Sensing (WPM)

Water use Assessments and Food Security: World population is increasing by about 90 million per year, calorie intake has increased to 2,800 calories per person per day (from 2255 in 1961).

Account for increasing consumption + waste Change in Trends in Global Croplands: Croplands are turned to areas for bio-fuels, consumption trends are changing (e.g., more fruits and vegetables), grain areas decreasing.....

Corn for bio-fuels?

Climate change impact on Croplands: (e.g., droughts in Australia);

- Alternative demands for water use: increasing urbanization, industries, recreation, environmental flows;
- Global scenario studies: Irrigated areas-water use-food production-population growth-virtual water trade.

Water Productivity Mapping (WPM) using Remote Sensing Questions Related to WP that WPMs can answer

Can we grow more crop with less water?;

Can we grow more crop with less land?

Can we continue to feed the world with same amount of land and water as of now and if so how long?, If not what alternatives do we have?

.....first, we need to understand where we more WP.....and where we have less WP.....then we need to measure WP, map WP.....then we will be ready to understand it and start looking for solutions.....

Study Area

GIAM & GMRCA

Water Productivity Mapping using Remote Sensing (WPM) The Syr Darya River Basin, Central Asia

Classic Large Scale Soviet Era Irrigation

Methods of WPM using Remote Sensing

GIAM & GMRCA

Water Productivity Mapping using Remote Sensing (WPM) Methods

The study involved 3 major steps leading to water productivity maps (WPMs):

- I. Crop productivity (kg\m²) maps (CPMs)
- Crop type mapping;
- Spectra-biophysical\yield modeling;
- Extrapolation to larger areas;

II. Water use (m³\m²) maps (WUMs) or ET_{actual}

 simplified surface energy balance (SSEB) model;

WPM Methods

1.0 Crop Croductivity Mapping

Methods of WPM: 1.0 Crop Type Mapping Crop Types Mapped using Multi-Date Landsat ETM+ 30m Data

2.0 WPM RS: Spectro-Biophysical Modeling Process

Field-plot Data: Variables, Sample size, and Mean Values of the Variables

Verieble	llusia	Collecting	Sample	Mean	Sample	Mean	Sample	Mean	Sample	Mean
variable	Unit	method	size	value	size	value	size	value	size	value
A. General			Cotton	Cotton	Wheat	Wheat	Maize	Maize	Rice	Rice
Coordinate	degree	Hand-held GPS	585	-	191	-	116	-	43	-
Soil type	-	Eye observation	15	-	15	-	6	-	2	-
B. Crop variables	for spectro-biop	hysical\Yield model	ing							
NDVI	-	NDVI camera	566	0.487	166	0.622	105	0.571	43	0.602
PAR	µmol m ⁻² s ⁻¹	LAI meter	580	1060	174	1029	105	960.429	38	957.868
Leaf area index	-	LAI meter	580	1.338	173	2.057	105	1.204	38	2.84
Wet biomass	kg/m²	Cut and counting	577	1.801	172	1.499	108	2.186	37	2.166
Dry biomass	kg/m ²	Cut and counting	575	0.772	172	0.563	106	0.994	37	0.884
Crop height	mm	Ruler	576	453	172	569.535	108	920.88	41	610.244
Soil cover	%	Eye estimation	585	61.753	175	30.144	113	49.301	42	8.2
Canopy cover	%	Eye estimation	585	34.087	173	58.035	113	36.451	42	69.78
Yield	ton/ha	Laboratory	45	2.109	45	3.495	18	2.983	6	4.523
C. Variables to stu	idy the factors at	ffecting Water Produ	uctivity							
EC	dS/m	EM-38 ^a	315	106.567	48	91.077	62	110.279	26	79.933
Soil moisture	%	Laboratory (weight)	36	12.55	9	16.9	15	11.95	6	18
Crop density	plant/m ²	Cut and counting	577	21.133	172	253.837	97	18.213	39	343.077
Weed cover	%	Eye estimation	585	5.025	173	12.922	108	14.426	42	10.595
Water cover	%	Eye estimation	585	3.51	173	0.556	108	0.01	42	13.738
Crop health	grading	Eye estimation	572	3.164	172	3.291	108	3.231	41	3.78
Crop vigor	grading	Eye estimation	573	3.004	172	3.087	108	3.028	41	3.61
D. Meteorological	variables for pla	nt water use estima	tions or ET ca	lculations						
Air temperature	Selsius degree	Automated weather	5798	22.1						
Relative humidity	%	station ^b	5798	50						
Wind direction	degree	(February-October)	5798	169.8						
Wind Speed	KM/h	, , ,	5798	1.38						
Rainfall	mm		5798	151.8						
E. Water applied n	neasurements									
Irrigation	22.22	W/oiro	-	000	0	00 57	4	450.0		055 0
application	mm	vveirs	5	293	2	80.57	4	158.9	4	355.2
Note: a = Average	value of vertical an	nd horizontal EC.	set un in Galat	ha site and t	ne weather da	ta was used	for all crops			

2.0 Spectro-Biophysical\Yield Models Continuous Spectra of Irrigated Cotton Crop @ different Growth Stage

2.0 Spectro-Biophysical/Yield Models using IRS LISS 23.5m and Quickbird 2.44m Data Best Model R² values and Waveband combinations

Spectro-biophysical and yield models. The best models for determining biomass, LAI and yield of 5

			Best bands			Best indices			
			sample					band	
Crop	Parameter	Sensor	size	Best model	band	R-square	Best model c	ombination	R-square
Cotton	Wet Biomass	IRS	140	Exp	2	0.697	Power	2, 3	0.834
		QB	41	Multi-linear	1, 4	0.813	Multi-linear	1,4; 3,4	0.506
-	Dry Biomass	IRS	136	Power	2	0.620	Power	2, 3	0.821
		QB	41	Exp	2	0.521	Exp	1, 2	0.661
-	LAI	IRS	135	Multi-linear	3, 4	0.634	Power	1, 3	0.725
_		QB	41	Multi-linear	2, 4	0.511	Quadratic	2, 4	0.574
-	Yield	IRS ^A	14				Linear	2, 3	0.753
		QB ^B	7				Linear	3, 4	0.610
Wheat	Wet Biomass	IRS	9	Quadratic	2	0.425	Quadratic	1, 3	0.678
	Dry Biomass	IRS	14	Quadratic	1	0.205	Quadratic	3, 4	0.309
	LAI	IRS	18	Quadratic	4	0.8	Multi-linear	1,3; 2,3	0.465
	Yield	IRS	12				Linear	2, 3	0.67
Maize ^D	Wet Biomass	IRS	19	Power	2	0.815	Power	2, 3	0.871
	Dry Biomass	IRS	17	Exp	2	0.928	Power	2, 3	0.903
	LAI	IRS	19	Multi-linear	1, 3	0.777	Multi-linear	1,2; 2,3	0.839
Rice ^E	Wet Biomass	QB	10	Multi-linear	1, 2	0.535	Multi-linear	1,2; 2,4	0.600
	Dry Biomass	QB	10	Multi-linear	1, 2	0.395	Multi-linear	1,3; 2,3	0.414
	LAI	QB	10	Multi-linear	2, 4	0.879	Quadratic	2, 3	0.234
Alfalfa	Wet Biomass	IRS	21	Power	2	0.838	Quadratic	1, 2	0.853
_		QB	8	Multi-linear	2, 4	0.772	Multi-linear 1	1,2; 2,3; 3,4	0.887
	Dry Biomass	IRS	21	Power	2	0.817	Exp	1, 2	0.812
-		QB	8	Multi-linear	2, 4	0.732	Multi-linear 1	1,2; 2,3; 3,4	0.867
	LAI	IRS	21	Power	3	0.499	Exp	3, 4	0.639
		QB	8	Multi-linear	1, 3, 4	0.927	Multi-linear	1,3; 3,4	0.858

crops using IRS LISS and Quickbird data (5-10% points sieved)

Note: A, Yield model using 2007 data B, Yield model using 2006 data

C, ∑NDVI camera is the accumulated NDVI derived using the hand hold NDVI camera for field data

iwmigiam.org

luring 2006

D, Sample points of data from Quickbird for maize was inadequate

E, Sample points of data from IRS for rice was inadequate

2.0 Spectro-Biophysical\Yield Models Illustrative Examples for Cotton Crop Variables versus IRS LISS 23.5 m Data

3.0 Extrapolation of Spectro-Biophysical\Yield Model understanding to Larger Areas using Landsat ETM+ 30m Data

The yield - NDVI correlation was applied to all pixels, classified as cotton, inside the study area, to model cotton productivity (Figure 5).

3.0 Extrapolation of Spectro-Biophysical\Yield Model understanding to Larger Areas using IRS 23.5m Data

2.0 Water Use or ET_{actual} (m³)

GIAM G GMRCA

Methods of WPM: 4.0 Water use or ET_{actual} ET_{actual} Theory (Surface Energy balance Models)

Actual evapotranspiration (ET) is calculated as the residual of the difference between the net radiation to the surface and losses due to the sensible heat flux (energy used to heat the air) and ground heat flux (energy stored in the soil and vegetation).

LE = Rn - G - H

LE = Latent heat flux (energy consumed by ET) (W/m²) Rn = Net radiation at the surface (W/m²) G = Ground heat flux (W/m²) H = Sensible heat flux (W/m²)

Methods of WPM: 4.0 Water use or ET_{actual} Different Methods of Determining ET_{actual}

1.Surface energy balance models (SEBAL); 2.Mapping Evapotranspiration with high resolution and internalized calibration (METRIX): **3.Simplified Surface Energy balance Model** (SEBAL); 4.Water applied (direct inflow and outflow measurement); **5.Water balance equations.** GIANEd GMRCA

Methods of WPM: 4.0 Water use or ET_{actual} Simplified Surface Energy Balance Model (SSEBM) Approach

Water use is determined by multiplying Evaporative fraction by reference ET

$$ET_{f rac} = \frac{T_H - T_x}{T_H - T_C}$$

$$ET_{act} = ET_0 * ET_{frac}$$

 ET_{act} – the actual Evapotranspiration, mm. ET_{frac} – the evaporative fraction, 0-1, unitless. ET_0 – reference ET, mm. T_x – the Land Surface Temperature (LST) of pixel x from thermal data. T_{H}/T_c – the LST of hottest/coldest pixels.

SSEBM for ET_{actual} or water use of Crops 4.1 Step 1 : ET_{fraction} using Landsat ETM+ Thermal Data

The raster layers of surface temperature, calculated from each Landsat ETM+ image were used for ET fraction modeling (Figure 6) by applying Simplified Surface Energy Balance (SSEB) model (see section 6.1).

Galaba Study Area in Syr Darya, Uzbekistan using Landsat ETM+ Thermal Data

3.0 Water Productivity Maps (WPM)

GIAM & GMRCA

Water Productivity Mapping (WPM) using Remote Sensing Increase Water Productivity of Existing Croplands

Crop Productivity

WP =

Water use

WP is crop water productivity (kg/m3)/(\$/m3)
Crop Productivity in units of Biomass (kg/m2) or Yield (tonn/ha) or Value (\$/ha)
Water use is seasonal actual ET (thousand m3/ha)

Crop Productivity = f (NDVI)

NDVI – Normalized Difference Vegetation Index (-), from satellite images:

NDVI = (NIR - Red) / (NIR + Red)

NIR and Red are reflectance in near-infrared and red bands

The best bet scenario is to continue to produce more (increase water productivity) food from existing croplands and water

Methods of Water Productivity Mapping (WPM) using Remote Sensing WPM of Agricultural Croplands

Cotton water productivity (kg\m3) map (Figure 11) is determined by dividing crop productivity (tonn\ha) map (Figure 5) by water use (thousands m3\ha) map (Figure 10).

Galaba Study Area in Syr Darya, Uzbekistan using Landsat ETM+ Thermal Data

6.0 How Can WPM Pin-Point Areas of Low and High WP Helping us focus on growing more food from available land and water

> GIAM & GMRCA

6.0 Water Productivity Maps pin-pointing Areas of Low and High WP Opportunities to Grow More Food from Existing Lands

.....here is an huge opportunity to grow more food from existing land and water resources.....

Quickbird 2.44m NDVI (2007-207)

Quickbird 2.44m NDVI (2007-207)

The trends in spatial variability in Quickbird 2.44m (this slide) and IRS LISS 23.5m (next slide) are similar.

.....what is important to note is the spatial variability within field.....indeed, about 50% of the field has low productivity......if we can increase spatial variability through better land and water management, we can afford to feed increasing populations (that are also more consuming) with available land and water.....

Quickbird 2.44m NDVI (2007-207)

4.0 Factors Affecting Water Productivity

7.0 Factors Affecting WP

Degree of influence of Various factors on WP variations within and between field as measured during field work

Water Productivity Mapping (WPM) using Remote Sensing WPM of Irrigated and Rainfed Croplands of the World

.....let us pin-point to areas in the world where there is mediul or low WP in irrigated and\or rainfed croplands,.....here is an opportunity for us to push for an world where we use same (and even better less) water and^{winigiam.org} land than we currently use but continue to produce more food......

Water Productivity Mapping (WPM) using Remote Sensing Conclusions

- 1. WPM methods and protocols established using Multiresolution RS: methods to highlight areas of high and low WP is developed using remote sensing. Establishing WP variations can help determine areas of low and high water productivity. This will help us to focus on areas of low WP and establish causes for the same. Once this is achieved strategies can be developed to increase WP of these areas;
 - Low WP areas dominate: Results showed that WP of the irrigated cotton crop (the most dominant crop in the Syr Darya river basin) varied between 0-0.6 kg\m3. Of this only 11 percent of the cotton crop area was in 0.4 kg\m3 or higher WP. About 55% of the cotton area had <0.3 kg\m3. The results had similar trends for rice, maize, and wheat.
- 4. Scope for increased WP: The results imply that there is highly significant scope to increase WP (to grow more food from existing land and water resources) through better management practices. The challenge is to increase land and water productivity of the 55% of the areas. If we can achieve that, food security of future generations can be secured without having to increase croplands and/or greater water use.

Water Productivity Mapping (WPM) using Remote Sensing Research Opportunity to Make a Difference

- 1. Cropland areas + crop types + geographic precision + irrigated areas + irrigation source (e.g., informal): reduce uncertainty high spatial resolution + time-series MODIS + field-plot data
- 2. Water use by croplands: reduce uncertainty Surface energy balance models
- 3. Water productivity mapping: pin-point areas of low and high WP RS + modeling
- 4. Food security, water security, environmental security: based on above From step 1 to 3

Giobal perspective GMRCA

Further Reading

GIAM & GMRCA

Water Productivity Mapping (WPM) using Remote Sensing **Further Readings**

3 peer-reviewed journal papers (2 published + 1 in review) + 1 poster + this presentation

- Platonov, A., Thenkabail, P.S., Biradar, C., Cai, X., Gumma, M., Dheeravath, V., Cohen, Y., Alchanatis, V., Goldshlager, N., Ben-Dor, E., Vithanage, J., Manthrithilake, H., Kendjabaev, Sh., and Isaev. S. 2008. Water Productivity Mapping (WPM) using Landsat ETM+ Data for the Irrigated Croplands of the Syrdarya River Basin in Central Asia. Sensors Journal, 8(12), 8156-8180; DOI: <u>10.3390/s8128156</u>. <u>http://www.mdpi.com/1424-8220/8/12/8156/pdf</u>.
- Biradar, C.M., Thenkabail, P.S., Platonov, A., Xiangming, X., Geerken, R., Vithanage, J., Turral, H., and Noojipady, P. 2008. Water Productivity Mapping Methods using Remote Sensing. Journal of Applied Remote Sensing, Vol. 2, 023544 (6 November 2008).
- 3. Cai, X.L., Thenkabail, P.S., Biradar, C., Platonov, A., Gumma, M., Dheeravath, V., Cohen, Y., Goldshlager, N., Eyal Ben-Dor, Victor Alchanatis, and Vithanage, J.V. 2008. Water Productivity Mapping Methods and Protocols using Remote Sensing Data of Various Resolutions to Support "more crop per drop". Photogrammetric Engineering and Remote Sensing (in review).

GIAM 8 GMRCA