Top-down estimation of CO₂ fluxes: lessons learnt and challenges ahead

Prabir K. Patra

The Third GEOSS Asia-Pacific Symposium: Data Sharing for Transverse GEOSS

> Kyoto Research Park, Japan 4-6 February, 2009

Plan of the talk

- Introduction
- Inverse/top-down model, and issues with forward transport errors
- Decadal CO₂ flux variability and its controls
- Estimation of absolute flux and example with improved transport model
- Recent developments in observing systems and future analysis perspectives

Basic Equations in the Inverse Model:

Forward model simulation of an atmospheric tracer (e.g. CO₂) mathematically is:

 $D_0 = G \cdot S_0$, where G is a linear operator representing atmospheric transport (no chemistry).

Inverse model equations for CO₂ fluxes and uncertainties:

r: inverse model region, s: observation station, t: time

64-Regions Inverse Model

(using NIES/FRCGC CTM and interannually varying NCEP/NCAR reanalysis meteorology)

Patra et al., Global Biogeochem. Cycles., 2005a,b

CO₂ <u>FLUX VARIABILITY</u> AND CLIMATE/ ANTHROPOGENIC ACTIVITIES LINK

Less dependent on transport modelling error, but network size dependent

Comparison of CO₂ flux anomalies with other estimates

ANOMALY: monthly-mean flux timeseries – average seasonal cycle

Patra et al., Global Biogeochem. Cycles., 2005a,b

Effect of Drought on Regional Land Fluxes

Simple empirical relations for atmospheric-CO₂ growth rate prediction

ources/Increase lates	1971- 1972	1986- 1987	2001- 2002
l Nino <mark>(Pg-C)</mark>	4.0	2.3	2.1
Soreal Fire <mark>(Pg-C)</mark>	0.0	0.5*	0.28*
CO ₂ Gr. Rate estimated) (ppm/yr)	1.9	1.6	1.3
CO ₂ Gr. Rate observed) (ppm/yr)	1.8	1.5	1.3

* this flux is confined to NH only

Drivers of CO₂ regional flux anomalies

TDI, vs. Bottom-up estimates:

1. Biome-BGC (drought) 2. GFEDv2 (fire emission)

Atmospheric-CO₂ variability and its controls

ABSOLUTE FLUX DETERMINATION

Transport modelling errors and measurement density affecting

Global & hemispheric Scale CO2 Fluxes – Network Dependency (Patra et al., GRL, 2006)

This work suggested that

Land sites lead to variations in flux estimation – more difficult to model?
Estimation of Ocean region fluxes is relatively robust

➤Improvement in forward transport model is desired, more than the use of multiple models

Land and ocean source/sink distributions: Implications for northern/tropical land sinks

Net ecosystem sink = inversion estimate - land use/LU change flux (Houghton, 2003)

	BEFORE	AFTER	
Tropical Land (Pg-C/yr):	1.10-2.20 = -1.10	0.85-2.20 = -1.35	
Northern Land (Pg-C/yr):	-2.16-0.02 = -2.18	-1.49-0.02 = -1.51	

Stronger NH sink

Equal NH and TR sink

New transport modelling initiatives: CCSR/NIES/FRCGC chemistry-transport model (ACTM); Validation using SF₆ model-observation comparison

Station ->	BRW	NWR	SCH	MLO	SMO	SPO	
Std. Dev. (ppt) (observed-model)	0.051 (N=1334)	0.077 (N=898)	0.389 (N=1020)	0.056 (N=1402)	0.034 (N=1284)	0.043 (N=1335)	Measurement precision = 0.05 ppt

CO₂ inverse fluxes using ACTM forward simulations – results are appearing to be less biased and prior free

Importance of increased observation network and well validated model transport

INV90Net97all: 90region Inv. mod., 97-site obs. Network, Incl. land & ocean sites

INV90PF0: As above, But with 0 Prior Flux

PKP06ocn: From Patra et al. (GRL, 2006), 22-region Inv. mod., 16 transport mod., Ocean only network

Looks like, we can ingest data from the both Land & Ocean sites, and Inverse model results can be free of initialization (prior flux)

Global land and ocean C-flux partitioning

Method/Period	Land	Ocean	References
1990-1999	1.40±0.7	1.70±0.5	IPCC, 2001/2007
pCO ₂ , 1995 2000		1.46 - 2.12 1.40±0.7	Takahashi et al., 2002 2009
O ₂ /N ₂ (~1990s)	1.26±0.8 0.70±0.8 1.00±0.6 1.00±0.9	1.86±0.6 2.40±0.7 1.70±0.5 2.10±0.7	Keeling & Garcia, 2002 Plattner et al., 2002 Bender et al., 2005 Tohjima et al., 2008
Atmospheric CO ₂ Inversions (~1990s) ~2000s	1.40±0.5 1.60±0.3 1.46±0.6 1.15±0.7 2.09±0.5 0.04-0.45	1.80±0.6 1.70±0.2 1.34±0.6 1.88±0.5 1.06±0.5 1.31 - 1.58	Bousquet et al., 2000 Roedenbeck et al., 2003 Gurney et al., 2004 Patra et al., 2005 Baker et al., 2006 This work (<i>ACTM; PF=0.0</i>)
Oceanic pCO ₂ Inv., 1970-2000		1.70±0.52	Mikaloff-Fletcher et al., 2006

SURFACE, AIRCRAFT, SATELLITE

Past, present and future of CO₂ measurement density

Surface measurement network is increasing... (from 2 sites in 1960)

Measurement of CO₂ using aircrafts have been started

Surface vs. satellite observations

Coarse resolution inversion

(42-regions; Patra et al., 2003)

High resolution inversion

(432 regions; Maksyutov et al., 2003)

Information content in the surface/aircraft and satellite observations are seemingly different (high quality vs. resolution), but need to be combined

Satellite observations are starting

Conclusions

- 1. Accuracy of CO₂ flux determination primarily depend on
 - Selection of observational networks (expansion and sustenance of the surface network)
 - Forward model transport (less on techniques)
- 2. The flux variability over land and ocean are linked to ENSO cycle at global scale, and the NAO, PDO at the regions scale
 - The top-down and bottom-up flux variability can be reconciled
 - This enables us to establish a CO₂ growth rate prediction model based on "climate-carbon" empirical relations
- 3. We really need more "hands/groups to join" the analysis and modelling activities for extracting meaningful information