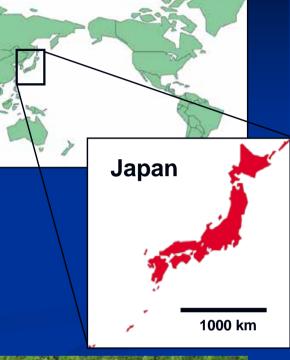
15, April, 2008 GEOSS AP Symposium Session: Mapping Forest and Tracking Carbon

Integration of forest information: Japan's forest carbon accounting system for Kyoto reporting


Mitsuo Matsumoto Forestry and Forest Products Research Institute, FFPRI Japan

Background

- FFPRI and Forestry Agency Japan developed a forest carbon accounting and reporting system, and National Forest Resources Database for national reports under the Kyoto protocol.
- The system integrated various forest information including forest registers, forest maps, sampling systems and remote sensed images.
- Based on the experiences, I will make a introduction of the system and a recommendation to discussion on REDD.

Japan's Forest

- Total land is 37 km² and islands are distributed over about 3,000km from South-West to North-East.
- Four climatic zones:
 - Sub-tropic,Warm temperate, Cool temperate, Boreal
- Large amount of precipitation (about 1,700 mm/year)
- Large proportion of land is occupied by steep mountains with forest cover.
- 67% of total land is forest
- 40% of forest is planted forest and 60% is semi-natural forest
- 69% of forest is private and 31% is national

Requirements for Kyoto Reporting

Definition and choice

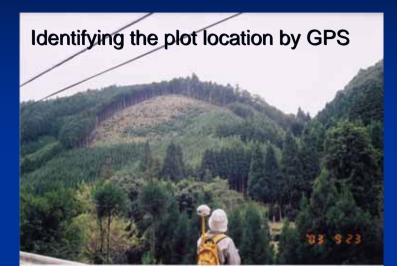
- Definition of "Forest"
- Election of Article 3.4 activities
 - Definition of Forest management
- Choice of reporting method
- Data and methods for accounting
 - Transparent data source and methods
 - Uncertainty assessment, Verification and QA/QC

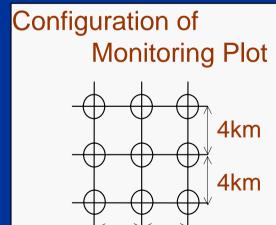
Accounting methods

- Carbon in 5 pools
 - Above ground biomass, Below ground biomass, Dead wood, Litters and Soil organic matter
- Article 3.3 ARD
- Article 3.4 FM lands
- Accounting and reporting systems

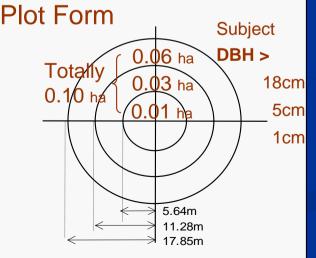
Japan's Forest Inventory System Based on Forest registers and Forest maps

Forest registers

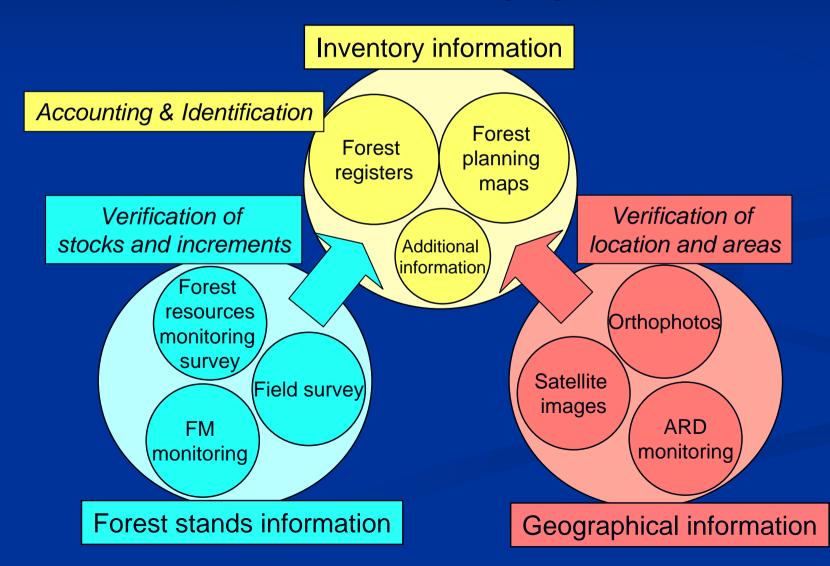

- Enumeration
 - Attribute information : Area, Species, Age, DBH, Volume etc.
- Every sub-compartment of all private and national forests
 - Total 41 M records
- Updating every 5 years
- Linkage with boundaries in forest planning maps


Forest maps

- 1/5000 scale maps
- Boundaries of forest compartments and sub-compartments
- 100% of the boundaries of forest components have been digitized for GIS.
- Around 80% of the boundaries of sub-compartments have been digitized for GIS


Forest Resources Monitoring Survey

- Started from 1999
- About 15,700 permanent plots on 4km × 4km grid points over the whole of national territory
- Each plot is surveyed every 5 years. 3,200 plots are surveyed annually.
- Each monitoring plot: triple circle of 0.1 ha


4km 4km

Design of Accounting and Reporting System

Accounting is based on forest registers and forest planning maps mainly
 Verification with independent stands and geographical information

Data and Method for Carbon Flux Estimation

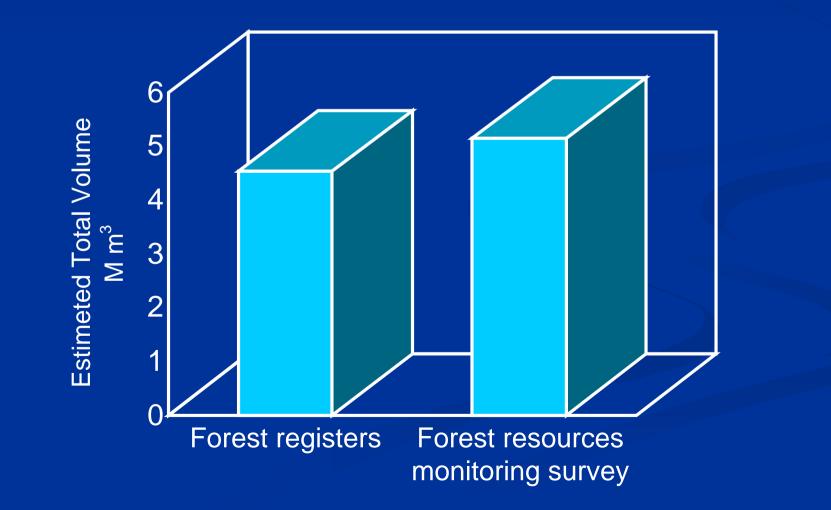
Base data

- Forest registers
- Forest planning maps

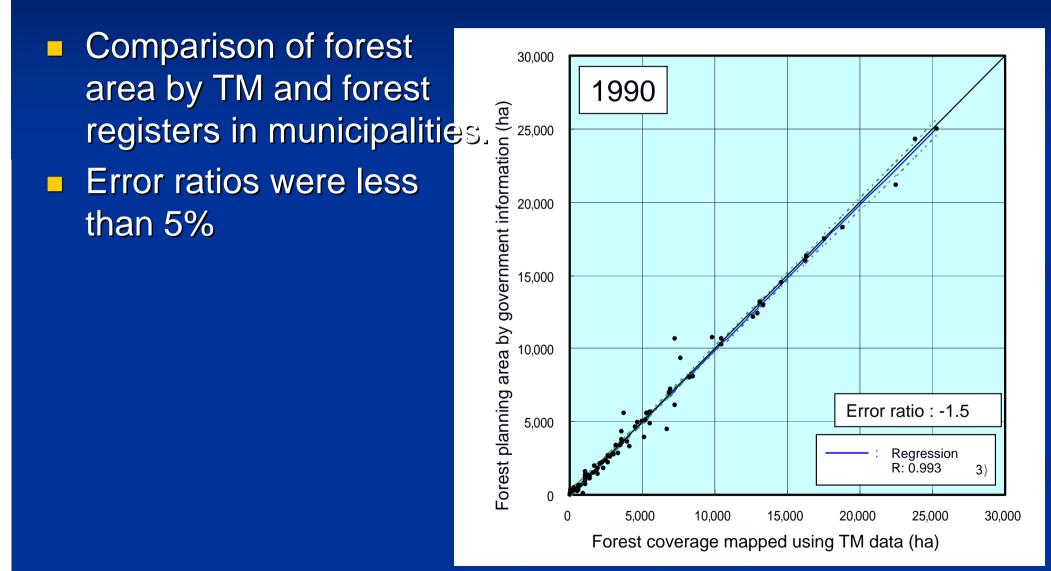
Estimation methods
 Stock change method
 Carbon flux

 (C stocks at t₂ - C stocks at t₁) /(t₂ - t₁)

 Carbon stocks


 Volume × Density × BEF × (1 + R/S ratio) × Carbon fraction

BEF, Root/Shoot ratio and Density


			BEF		D
		≦20	>20	R	D
	Japanese cedar	1.57	1.23	0.25	0.314
	Hinoki cypress	1.55	1.24	0.26	0.407
	Sawara cypress	1.55	1.24	0.26	0.287
	Japanese red pine	1.63	1.23	0.27	0.416
	Japanese black pine	1.39	1.36	0.34	0.464
	Hiba arborvitae	2.43	1.38	0.18	0.429
	Japanese larch	1.50	1.15	0.29	0.404
	Momi fir	1.40	1.40	0.40	0.423
	Sakhalin fir	1.88	1.38	0.21	0.319
Conifer	Japanese hemlock	1.40	1.40	0.40	0.464
	Yezo spruce	1.92	1.46	0.22	0.348
trees	Sakhalin spruce	2.15	1.67	0.21	0.364
	Japanese umbrella pine	1.39	1.23	0.18	0.455
	Japanese yew	1.39	1.23	0.18	0.454
	Ginkgo	1.51	1.15	0.18	0.451
	Exotic conifer trees	1.41	1.41	0.17	0.320
	Other conifer trees	2.55	1.32	0.34	0.352
		1.39	1.36	0.34	0.464
		1.40	1.40	0.40	0.423

Verification of Forest Volume

 Estimated forest volume by Forest resources monitoring survey was 13.8% larger than one by forest registers.

Verification of forest area - RS mapping and forest registers -

Identification of Article 3.3 ARD

ARD

Afforestation, Reforestation and Deforestation

- Land-use changes form/to forests
- Temporal harvesting is not deforestation

Detected Changes with TM and Orhophotos

Interpretation of land-use change with orthophotos

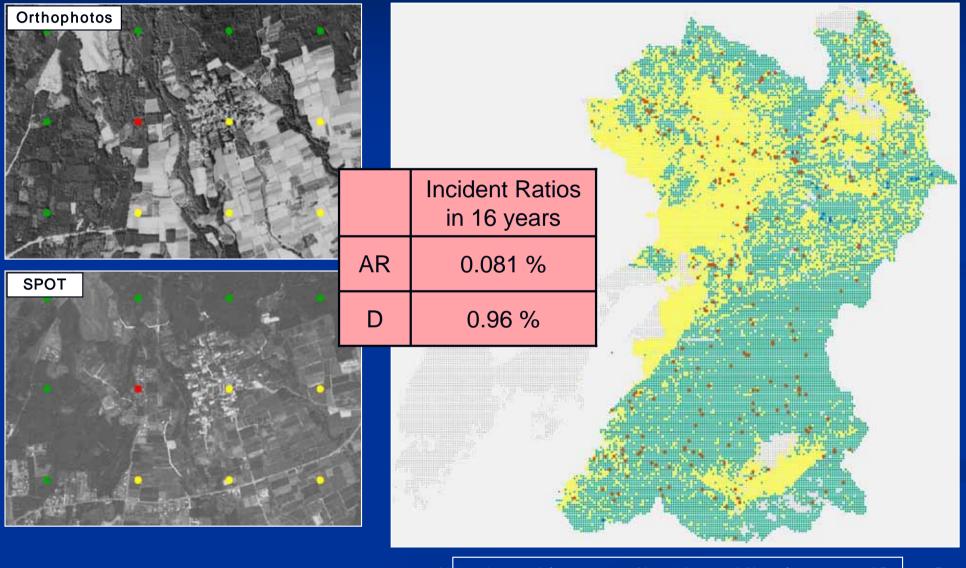
Result

Image analysis of land-cover change with TM

	TM	Photo	Ratios
AR	8816.9 ha	11.9 ha	0.15 %
D	5753.0 ha	449.5 ha	7.8%

Identification of Article 3.3 ARD

 Detection of land-cover changes by image analysis of TM images is not effective in Japan.
 Differences between land-cover changes and landuse changes


An alternative method

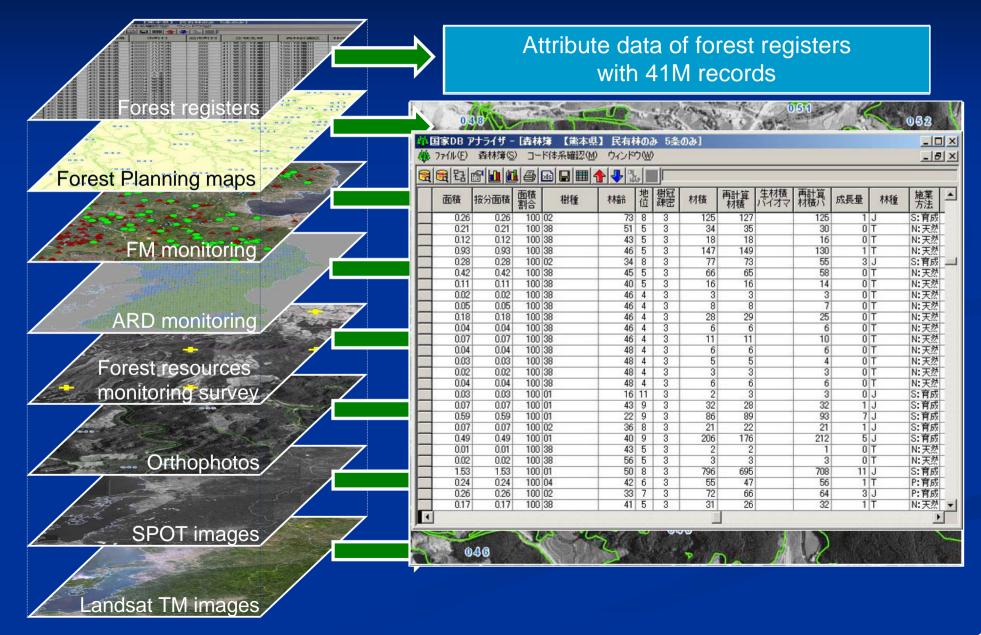
We tried to monitor ARD by systematic sampling with 500m grids on orhtophotos in 1990 and high resolution satellite images in the relevant year.

ARD Detection by Interpretation of Orthophotos and SPOT Images on 500m grids

[ARD Interpretation]

[Result of ARD Detection]

National Forest Resources Database – NFRDB –


Two servers

- Main system in Forestry agency
 - Ordinary use
- Sub system in FFPRI
 - Backup system
 - Research and development

Main Data on NFRDB

Carbon Flux in Japanese Forests in 2005 under UNFCCC and the Kyoto Protocol

							1,000t-C/yr
		Above-ground Biomass	Below-ground Biomass	Dead wood	Litter	Soil	Total
Carbon Sinks		23,599		▲ 168		434	23,865
					5	7	
Carbin Sinks under KP		7,759	1,922	▲ 214	63	138	9,667
	Aforestation and Reforestation	55	14	11	5	7	93
	Deforestation	▲ 312	▲ 96	▲ 119	▲ 52	▲ 78	▲ 657
	Forest Management	8,016	2,003	▲ 106	110	209	10,231

Conclusions and Recommendations

- Integration of various forest information was powerful for accounting and reporting under the Kyoto protocol.
- Especially it helped verification on stand volume and forest area.
- More attention must be paid to differences between deforestation and temporal harvesting.
- Strong linkages between field survey and remote sensing are crucial for monitoring forest carbon flux.

Thank you for your attention