Predicting potential habitats for plants under climate change and assessing vulnerability in Japan: especially referring to buna (*Fagus crenata*) forests

Tanaka, N., Matsui, T., Yagihashi, T., Taoda, H.

Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Japan

Topics

- 1. Predicting potential habitats for buna forests
- 2. Predicting potential habitats for a dwarfbamboo species
- 3. Monitoring to detect effects of climate change

Studies using the NSNE 3rd (1-km) mesh vegetation database (MVDB)

Buna (Fagus crenala

Actual distribution of buna forests

Data

Vegetation data

3rd (1-km) mesh vegetation data (MVDB)

Anthropogenic vegetation and lands: 188,363 cells----- ExcludedNatural vegetation:156,804 cellsBuna forests:23,432 cellsOther vegetation types:133,372 cells

Environmental data

3rd (1-km) mesh climate data (Average for 30 years, Japan Meteorological Agency)

WI: warmth index (°C-month)

TMC: mean minimum daily temperature of coldest month (°C-month)

PRW: winter precipitation (Dec. to March; mm)

PRS: summer precipitation (May to September; mm)

Maps of four climatic variables under the current climate and future climates,

i.e. the CCSR/NIES scenario in 2091-2100 and the RCM20 scenario in 2081-2100.

Classification tree model for buna forests

Suitable habitat conditions for buna forests

Where probability of occurrence is more than 0.5

The Sea of Japan side of northern Honshu and the southern Hokkaido

High precipitation both in winter and summer (564<PRW, 731<PRS)

Moderate WI (48.9<WI<77.2)

Moderate coldness in winter (-12.3<TMC)

Buna forest distribution maps:

(A) Actual distribution and predicted probability distributions of buna (*Fagus crenata*) under (B) the current climate and (C) the CCSR/NIES climate change scenario in 2091-2100 (D) that under the RCM20 scenario in 2081-2100.

Distribution of sensitivity index (SI) of buna forests

SI = PS - PC

PS = probability of the CCSR/NIES scenario

PC = probability of the current climate

Vulnerability Index for buna forests (VI) VI = 1 / Occurrence probability

The MVDB (NSNE 3rd mesh vegetation database) provides the distribution data on vegetation types, **but lacks the species distribution data.**

In order to predict habitats of a variety of species, it is necessary to construct databases on plant species distribution.

14 植生調査データベース作成 Version 4.15 📃 🗌 🗙												
ファイル(日) ツー	ル(I) 編集(E)	検索(12) 設定	変更(P) /	(ルブ(日)								
ファイル Sa	ample千葉.f	vi 収録数		- スダジイ			関	閲覧・編集				
収録番号	9	Elevation(m	45	番号	植	物名	Spp.	T1	T2	SH	M	~
ID no.	TN10713	Aspect	N20E	<u>щ у</u>	スダジ	<u>ルーロ</u> イ		44	1	3 23		ī
Place name	清田	Incrination	25	5	ヒサカ	+			22 2	2 11		
Survey date	19780825	Topography	斜中,	7 🗔 🕄	ヤブニ	ッケイ			22 +	11		
m. Latitude	0354442	Microtopogr:	か」」 一の fkh 、		ヤブツ	バキ			12 +	£		
yo Longitud	14049574	Geology			ヤマボ	ウシ			+	-		
Neeb oode	1404JJ74	Coil	但木		ネズミ	モチ	8		1	2		
mesh code	55404596	1100	100		ムラザ	キシキフ			+	• +	_	
Story no.	5 -	Area (mZ)			ヤマク	ソーチョー			+		-	
Dominance	2 <u>-</u> Sp.	. no. 43	43		アゴマ	スチャー			-	12	-	
Surveyers	若林裕	Γ.	自紙化		ヤブコ	サジ			-	23		
T1 height (m)	10 T1	cover (%)	70	15	ッルグ					11		
T2 height(m)	7 T2	cover (%)	30	1:	ナキリ	スゲ				23		
S1 height (m)	3 S1	cover (%)	20	14	クワ	and the				11		
S2 height (m)	S2	cover (%)		19	ジャノ	ヒゲ				13		
H1 height (m)	1.3 H1	cover (%)	65	- 16	キズタ					12		
H2 height (m)	H2	cover (%)		- 17	モチノ	+				11		
M height (m)	M	cover (%)		- 18	ノダフ	<u>V</u>				+		
重重	₩₩₩落千華旧	15			コバノ	ガマスミ			-	11		
Remark # 4	one 100+78 1 367	.0		20	アカカ	<u>ン</u>			-	11		
I.					ドノワ	マナビ				14		
				20	シノクロ	ルシ			-	12		
				2.4	ヤマノ	イチ			-	+	-	
				25	ガマズ					11		
				26	サルト	リイバラ				+		
				27	サワラ					+		
				28	イボタ	ノキ				+		
				29	ビナン	カズラ				+		
				30	ーヘクソ	カズラ				+		
				31	カクレ	ミノ			_	+		
				32	シロダ	.				+		
				33	タフノ	キー			_	+	_	
				34	レユン	フン 44 44			_	*		
				20	ファミ	9 9 9 H			-	+		
				30	ホウチ	サクリウ			-	+		
				38	アオキ					+		
				39	カミエ	Ľ				+		
				40	モッコ	ク				+		
				41	ゴンズ	イ				+		
				42	コナラ					+		
				4:	キヨス	ミイボタ				+		¥
Creation 20	060426 Revisio	n 200604	27	キョ i自力の	⁄ 二 前へ	任意位置	🔁 次へ	A 書认次	E			

Sasa kurilensis Dominant undergrowth plant species in snowy areas

0 1000 2000 3000 Elevation (m)

Predicted probability distributions of Sasa kurilensis under the climate change scenario, RCM20 (2081-2100)

Monitoring to detect effects of climate change

Suitable places for monitoring:
Vulnerable and/or sensitive areas

• Methods of monitoring:

Permanent plots: less than 10 ha

Remote sensing techniques: more than 10 ha

Vulnerability Index for buna forests (VI) VI = 1 / Occurrence probability

A declining buna forest in Mt. Tsukuba, located in a marginal habitat with low precipitation in winter and high temperature.

Monitoring of buna trees by ortho air photos in Mt. Tsukuba

Ortho air photo

Date: April 30, 2004 Area: 820 ha Spatial resolution: 12.5cm

Mt. Tsukuba in autumn

Identifying buna canopies

Buna trees have new leaves on April 30, 2004

Identifying buna canopies

Buna: polygons of red lines Estimated no. of buna trees: 1,915

Monitoring of a buna forest by 1-ha permanent plot

Census of all trees with DBH>5cm

Conclusion

➤The tree model using the MVDB and four climatic variables could predict the distribution of buna forests.

➤The area of suitable habitats for buna forests decreases into 9 % under the CCSR/NIES scenario (2091-2100) and 37 % under the RCM20 scenario (2081-2100). Buna forests in Pacific side of Honshu, Shikoku, Kyusyu will be most vulnerable.

>The MVDB lacks the information on plant species distribution. In order to predict habitats of a variety of species, it is necessary to construct databases on plant species distribution such as the PRDB.

>In order to Monitor effects of climate change on plant species, it is necessary to place monitoring sites in areas vulnerable and/or sensitive to climate change.

Thank you

This studies have been supported by the grants:

the Global Environmental Research of Japan (B-11 and S-4) program, the Ministry of the Environment

Influential variables of climate

Deviance weighted score (DWS) in the model shows

PRW>WI>TMC>PRS

Unsuitable habitats

Distribution of cells with low probability of occurrence (<0.01)

Unsuitable habitats

Distribution of cells with low probability of occurrence (<0.01)

USDA United States Department of Agriculture

Forest Service

Northeastern **Research Station**

General Technical Report NE-265

Atlas of Current and Potential Future Distributions of Common Trees of the Eastern United States

Louis R. Iverson Anantha M. Prasad Betsy J. Hale Elaine Kennedy Sutherland

Index of Scientific Names

Page number in **bold** is for map information; number in *italics* is for life history information.

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

Abies balsamea Acer negundo Acer pensylvanicum Acer rubrum Acer saccharinum Acer saccharum Betula alleghaniensis Betula lenta Betula papyrifera Carpinus caroliniana Carya cordiformis Carya glabra Carya ovata Carya spp. Carva tomentosa Celtis laevigata Celtis occidentalis Cercis canadensis Cornus florida Crataegus spp. Diospyros virginiana Fagus grandifolia Fraxinus americana Fraxinus nigra Fraxinus pennsylvanica Fraxinus spp. Gleditsia triacanthos llex opaca Juglans nigra Juniperus virginiana Liquidambar styraciflua Liriodendron tulipifera Maclura pomifera Magnolia virginiana Morus rubra Nyssa aquatica Nyssa sylvatica var. biflora Nyssa sylvatica var. sylvatica Ostrya virginiana Oxydendrum arboreum

176	Pinus echinata	92	193
176	Pinus elliottii	94	193
176	Pinus palustris	96	194
177	Pinus resinosa	98	194
177	Pinus strobus	100	19
178	Pinus taeda	102	195
178	Pinus virginiana	104	196
179	Platanus occidentalis	106	196
179	Populus deltoides	108	197
180	Populus grandidentata	110	197
180	Populus tremuloides	112	198
180	Prunus serotina	114	198
181	Quercus alba	116	199
181	Quercus coccinea	118	199
182	Quercus falcata var. falcata	120	200
182	Quercus falcata var. pagodifolia	122	201
183	Quercus laurifolia	124	201
183	Quercus macrocarpa	126	202
183	Quercus marilandica	128	202
184	Quercus muehlenbergii	130	203
184	Quercus nigra	132	203
185	Quercus palustris	134	204
185	Quercus phellos	136	204
186	Quercus prinus	138	205
186	Quercus rubra	140	205
187	Quercus stellata	142	206
187	Quercus velutina	144	207
187	Robinia pseudoacacia	146	207
188	Salix nigra	148	208
188	Salix spp.	150	208
189	Sassafras albidum	152	209
189	Taxodium distichum var. distichum	154	209
190	Taxodium distichum var. nutans	156	209
190	Thuja occidentalis	158	210
190	Tilia americana	160	210
191	Tsuga canadensis	162	211
191	Ulmus alata	164	211
192	Ulmus americana	166	212
192	Ulmus rubra	168	212
192	Ulmus spp.	170	213

54

55

Imp.Val.

< 1.0

1.0-3

3-5

10-20

20-30

30-50

> 50

N Little's

No Data

Boundary

Imp.Val.

< 1.0

1.0-3

3-5

10-20

20-30

30-50

2 > 50

N Little's

No Data

Boundary

Imp.Val.

< -20

-20 to -10

-6 to -3

-3 to -1.0

1.0 to 3

3 to 6

6 to 10

> 20 No Data

10 to 20

-1.0 to 1.0

5-10

5-10

Phytosociological Relevé Database (PRDB) operated by FVD

