NaGISA and DIWPA ---- as examples for strategic implementation plan of globalscale and long-term biodiversity monitoring program

> Yoshihisa Shirayama Field Science Education and Research Center, Kyoto University

GEO and Biodiversity

- Biodiversity is the most difficult target to carry out long-term global-scale observation
 - Impossible to apply satellites
 - Impossible to apply monitoring censers
 - Heavily dependent on human power
 - Specialized knowledge to identify species is prerequisite

Key issue

- International collaboration
- Participation of none scientists
- Commitment of governmental body

DIWPA: DIVERSITAS in Western Pacific and Asia

Promoting biodiversity research in Western Pacific and Asia

- Newsletters and website
 - http://diwpa.ecology.kyoto-u.ac.jp/index.htm
- Promoting DIWPA-IBOY (Internat'l biodiversity observation year)
- ·Establishing a database
- Fostering young scientists/seeding projects
- Internat'l symposium for education and dissemination
- ·Linkage with global change programs

14 Steering Committee Members

Charters

400 members from 41 countries

Secretary Office C/o Center for Ecological Research Kyoto University

DIWPA-IBOY (2000-2001) Promoting standardized sampling & monitoring of ecosystems and biodiversity

Forest ecosystems Fresh water ecosystems Coastal marine ecosystems Island ecosystems

Lake Baikai

International Biodiversity Observation Year International Biodiversity Observation Year Biodiversity Research Methods IBOY in Western Pacific and Asia

International Biodiversity Observation Year International Biodiversity Observation Year

International Biodiversity Observation Year International Biodiversity Observation Year

Protocol manuals @ DIWPA website

DIWPA future direction: Partnership with global-change programs "Biodiversity/ecosystem changes feeds back to global environments"

New unifying projects: Carbon and Biodiversity (Relating to REDD in GEOSS) Landscape change and biodiversity (Relating to monitoring in GEOSS)

Mount Kinabalu (4095m) in Borneo

Air Dryness

Lake Biwa: Long-term monitoring with biological archives (specimens)

- Starting from 1914
- Over 3000 specimens from aquatic ecosystems

Lake Biwa

The Kyoto University Museum

Decadal changes in trophic levels of three functional feeding groups in fishes

Data source N. Okuda

Use of stable isotopes and radiocarbon for ecosystem monitoring

Study of carbon cycling using $\Delta^{14}C$

Atmospheric CO, Photosynthesis Biomass Storage Old soil C Erosion Soil Storage River degassing Biver Flood plain storage Inorganic carbon (IC Riverine OC, IC export Organic carbon (OC) C Photosynthesis-Decomposition = Open ocean storage Coastal sediment storage

Environmental science under global warming Carbon turnover

Mainly Chronology

e.g. Organic and inorganic carbon transfer from terrestrial to aquatic ecosystems.

Raymond, P.A. (2005) Nature 436: 469-470~

Food web structure using carbon and nitrogen stable

Natural Geography In Shore Areas A Census of Marine Life Field Project

Produced by Seto Marine Biological Laboratory, Field Science Education & Research Center, Kyoto University

Natural Geography In Shore Areas

Natural Geography In Shore Areas <u>nagisa</u> is the Japanese word for the area where the ocean meets the shore, it implies the whole shore ecosystem

Mission Statement

To discover, describe and record the biodiversity of the worlds costal zones and the changes in it over time

Discover the Worlds Near Shore

Project Description

A collaborative initiative aimed at establishing an initial baseline of biodiversity in the near shore
Promoting wide-scale, standardized sampling
To highlight patterns and changes in biodiversity of the worlds coast
Dedicated to involving local researchers and communities
To create a capable foundation for long-term

coastal monitoring programs

Basic Idea of NaGISA

Even closer

ota following the same

Protocol

- habitat: macroalgae (hard bottom), seagrass bed (soft bottom)
- protocol as simple as possible
 - to let non-scientists and developing country people to join
 - to sample for a long time to monitor environmental change

Problems to be overcome

Need many sampling sites – Participation of citizens

Joint sampling with developing country scientists

Lacking of specialists in taxonomy

- Training parataxonomists through workshop
- 1st workshop on Polychaetes held in 27-29
 September, 2003
- 9 workshops have been held

Supervising identification

Global Scope of Project 2

NaGISA Sites
 HNS Sites
 2008+ Sites

NaGISA Deliverables Scientific

Provide basic information: a global pattern of biodiversity based on comparable data
The frame work for a long term monitoring program for biodiversity (invasive species)
Enhance global taxonomic studies
Accelerate the study of Meiofauna

NaGISA Deliverables Education

- Taxonomic and para-taxonomic training
- Enhance public awareness of marine organisms and marine diversity
- Make pertinent timely information (data) available through NaGISA online and OBIS for researchers, decision makers, stake-holders and the general public (management success, sustainability)

Work Locally Study Globally

Data becomes available for research, education and decision making around the world

OBIS is a project of the OF MARINE LIFE

OBIS Datapoints

OBIS Global Coverage (September 2006)

OBIS Vertical Coverage

Depth of Record Location (m)

Numbers of species

	Total OBIS	listoT world	% in OBIS	
Vertebrata	13,887	14,272	97%	vertebrates
Nematoda	2,004	4,200	48%	round worms
Cnidaria	3,516	7,598	46%	anemones+corals+
Annelida	2,594	<mark>8,0</mark> 80	<mark>32%</mark>	worms *
Other	<mark>629</mark>	2,197	<mark>29%</mark>	other
Tunicata	2 41	1, <mark>2</mark> 86	19%	tunicates
Crustacea	5,584	30,472	18%	crustaceans
Mollusca	<mark>5,708</mark>	<mark>32,81</mark> 3	17%	molluscs
Pycnogonida	141	940	15%	sea spiders *
Echinodermata	<mark>802</mark>	6,700	1 <mark>2%</mark>	echinoderms
Bryozoa	<mark>528</mark>	<mark>5,700</mark>	<mark>9%</mark>	mat animals *
Nemertea	115	1, <mark>25</mark> 0	<mark>9%</mark>	ribbon worms *
Porifera	310	6,000	<mark>5</mark> %	sponges
Platyhelminthes	0	6,795	0%	flatworms *

Maximizing Coral Reef Biodiversity

by conserving sites with long-term optimal temperature & pH conditions for calcification

www.iobis.org

Conclusion

- Global-scale, long-term monitoring of biodiversity can be implemented by international collaboration
- Current data will serve as a baseline for monitoring change of biodiversity
- Database is essential to utilize the data obtained
- Analyses of data will contribute prediction of ecosystem change in the future

Thank you