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• Satellite remote sensing is powerful in monitoring global crop 
production.

• Seasonal climate forecasting can offer additional information for 
food agencies to strength their capacity.

• This talk presents recent use of climate forecast data in yield 
predictions for a large spatial domain (subnational to global).

Purpose of this talk
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Climate forecast-based yield prediction
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Seasonal forecasting and climate change adaptation
Adapted from Deser et al., (2012) Nature Climate Change
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• The amplitude of interannual
temperature variability is in 
general larger than long-term 
temperature change.

• Responding better to seasonal 
climate-induced supply shocks 
will increase society’s capability 
to adapt climate change by up 
to the middle of this century.
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Luo et al. (2005) Journal of Climate, https://doi.org/10.1175/JCLI3526.1

ENSO forecasts are skilful even at 12 months lead time
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Yield impacts associated with ENSO

Iizumi et al., 2014, Nature Communications, doi:10.1038/ncomms4712 6



Full text (in Japanese) is available: 
http://www.maff.go.jp/j/zyukyu/jki/j_rep/monthly/201407/pdf/21_monthly_topics_1.pdf

• The incidence of El Nino was predicted in spring 2014. 
• Predictions on possible variations in 2014-fall yields (lead time of +1 to +6 

months) were released on July 31, 2014 via the Monthly Oversea Food 
Demand & Supply Report of MAFF.

Yield prediction for 2014 El Nino
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t = 0t = −100

Date in which crop 
forecast is conducted

t =+202�216

Lead time of crop forecast (60 – 216 days)

Days in the 
system

Recorded 
sowing date

Seasonal climate forecast dataBias-corrected 
reanalysis data

Predicted harvesting 
date and yield

It varies by sowing date and location

As the BCed reanalysis and climate forecast 
data overlap, the length of available climate 
forecast could vary

Combine BCed reanalysis data from 
t-100 to t-1 with climate forecast 
data from t to t+202 (max t+216)

217-days long climate 
forecast data  by every 15 

days (in case of JMA)

Seasonal crop forecasting system (prototype)

Grid A
Grid B
Grid C
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Days from forecast and predicted harvesting date

Harvesting date in 
Cornbelt in the US is 
predicted 140 to 160 
days ahead (Sep 18 to 

Oct 8)

1981

No crop forecast is 
made as major 
maize in South 
America was just 
after the harvesting. 
Secondary maize is 
separately predicted 
in this system. 

0501/maize_major/00/I16

Example of maize forecast made on May 1st
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Example of maize forecast made on December 15th

Days from forecasting to predicted harvesting (= lead time)

1215/maize_major/00/I16

No maize forecast is 
made for Northern 

Hemisphere as maize  
in that region does not 
reach maturity within 

214 days

Predicted harvesting 
date in South America 

is 100 to 140 days 
ahead (March 25th to 

May 5th, 1982

1981

Timing of crop forecast 
needs to be appropriately 
set depending on the lead 
time and cropping season 

in target regions



NARO APCC
Iizumi Kim (W) Shin Kim(M) Choi

FY2017 

(2017 April – 2018 March)

FY2018

(2018 April – 2019 March)

FY2019

(2019 April – 2020 March)

FY2020

(2020 April – 2021 March)

NARO-APCC Joint Research

Supply & consult about APCC MME 

Temp & Prec hindcasts

If yes. Or quit the joint research.

1-yr long test operation of the 

system & service with wider users

Address technical & scientific issues to improve the system & service

User feedbacks

Consult about methodological 

details on yield models and supply 

modified models if necessary

Develop the system & user interface

Evaluate if the developed system & service operate at APCC in coming years

Evaluate if NARO-APCC goes to the development of crop forecast infomation service 

1-yr long test operation of the 

system & service with closed users

Modification & validation of 

statistical yield models using APCC 

MME Temp & Prec hindcasts

Specify the format of crop forecast info and specification of the system & service

↓ We are here!
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Hindcast experiments

JRA25-T-P Regression coef. GDHY
1984-2010

* Leave-three-out cross-validation technique was used.

APCC-T-P
CSMCANCM3-T-P

NASA-T-P
NCEP-T-P

How good a multi-model ensemble of climate forecasts are to 
predict yield variability 3- or 6-month before the harvesting?

Y-APCC
Y-CSMCANCM3

Y-NASA
Y-NCEP
Y-PNU

GDHY
1984-2010

Y-MME

PNU-T-P

“Actual” climate “Actual” yield

Predicted climate Predicted yield

“Actual” yield
* A single best climate model was selected based on independent subset.
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Statistical yield model

ΔT, RGP mean T anomaly (oC); ΔP, RGP mean P anomaly (mm/d)
a0, a1, a2, regression coefficients; ε, error term

ΔY, yield anomaly (%); Y, yield (t/ha); Y, average yield (t/ha)

Subscript: t, year; Regression coefficients were estimated by crop, 
cropping season and grid cell. 

Δ!" =
(!" − !"&')
)!"&*:"&'

×100 (1)

Δ/" = /" − /"&' (2) Δ1" = 1" − 1"&' (3)

Δ!" = 34 + 3' 6 Δ/" + 37 6 Δ1" + 8 (4)
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Performance of 3-month-lead yield prediction
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Yield prediction is reliableYield prediction is less reliable

� Good skill (ROC is significant at 10%)
� No skill (ROC is not significant)
� No data available

Iizumi et al., 2018, Climate Services, 
https://doi.org/10.1016/j.cliser.2018
.06.003

https://doi.org/10.1016/j.cliser.2018.06.003


Prediction of country average yield variability (3-mon lead)
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Prediction of country average yield variability (6-mon lead)
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• Year-to-year variations in yield in many parts of global harvested 
area can be predicted several months before harvesting.

• There are differences between the two methods:
• Climate forecasts likely have a longer lead time than RS in 

expense of spatial resolution (0.5o to 1o). 
• Reliability of climate forecasts varies by season and region 

(⇔RS has the consistent quality over season).
• Yield is the only variable for climate forecast, whereas RS 

can derived multiple variables (area planted).
• Climate forecasts is useless when non-climatic factors lead 

to yield loss (e.g., landslides, pests).
• Better understanding pros and cons of these two approaches 

would benefit food agencies to think about best mix. 
• A joint work with JAXA is ongoing to explore better yield 

prediction methods using satellite and climate data.

Some thoughts
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Questions?
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Reproductive growth period (RGP)
SAGE global crop calendar 

(Sacks et al., 2010, Global Ecology & 
Biogeography, doi:10.1111/j.1466-

8238.2010.00551.x)

mstart & mend, the month in 
which RGP starts and ends, 
respectively.
mh & dh, harvesting month 
and date.
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Global dataset of historical yields (GDHY)
Iizumi et al., 2014, 

Global Ecology and Biogeography, 

doi:10.1111/geb.12120
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Version 1.2 (0.5
o
; 1981-2011; doi:10.20783/DIAS.528) is available online

http://search.diasjp.net/en/dataset/GDHY_v1_2



Reliability of grid-cell yield estimates in GDHY dataset
Elliott et al., 2015, Geoscientific Model Development, 

doi:10.5194/gmd-8-261-2015
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In-depth validation of GDHY dataset is available soon
Iizumi et al., 2018, PLOS ONE, doi:10.1371/journal.pone.0203809 (in press)



FAO, http://www.fao.org/worldfoodsituation/foodpricesindex/en/

Relatively high food price is persistent
Monthly deflated data; 2002-2004=100
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Main climatic driver of yield variability
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150
Mha

209
Mha

Iizumi et al., 2013, Nature Climate Change, doi:10.1038/NCLIMATE1945 23



Yield prediction using “actual” climate (0-mon lead)

� Good skill (ROC is significant at 10%)
� No skill (ROC is not significant)
� No data available 24



The mosaic method selects the best-performing GCM 
by location and cropping season

Note that this GCM selection is based on the independent data 25



Country-level predictions (3-mon lead), maize & soy
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Country-level predictions (6-mon lead), rice & wheat

27



Settings of statistical yield models
Iizumi et al (2013) Iizumi et al. (2018)

Period 1983-2006 (24yr) Grid, 1984-2010 (27yr)
Country, 1984-2015 (32yr)

Yield anomaly 
(normalization)

First difference 
(average yield t-3:t-1)

Same as I13

Climatic variables T & S T & P
Crop calendar SAGE (Sacks et al., 2010) Same as I13
Calibration MCMC Same as I13
Skill score R2 ROC
Yield dataset Global dataset of 

historical yields (GDHY) 
version 1

GDHY version 1.1

Climate model(s) SINTEX-F1 (average over 9 
ensemble members)

5 GCMs & 2 MME 
methods

Bias correction Yes (CDFDM) Same as I13
28



Year Observed yield anomaly (%) Hindcasted yield anomaly (%)

1984 25.144 2.52

1985 11.087 4.187

1986 1.338 5.048

1987 0.41 1.201

1988 -29.589 -1.987

1989 29.325 4.822

1990 2.09 5.527

1991 -9.29 0.6

1992 19.979 7.427

1993 -25.745 3.989

1994 33.36 1.1

1995 -20.324 0.607

1996 11.579 6.867

1997 -0.321 0.616

1998 6.325 2.619

1999 -0.497 5.357

2000 2.338 2.386

2001 0.971 3.677

2002 -6.493 -1.845

2003 9.534 5.355

2004 13.288 7.364

2005 -8.615 -0.05

2006 0.768 1.955

2007 1.054 3.816

2008 2.148 6.805

2009 7.143 -2.354

2010 -7.591 7.363

N=27 False N=9 True N=18
Negative (<1.100)
N=7 ��

True negative
0.667 (6/9)

False negative
0.056 (1/18)

Positive (≥1.100)
N=20 ��

False positive
0.333 (3/9)

True positive
0.944 (17/18)

ROC (Receiver Operatorating Characteristic) score for yield gains
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ROC score for yield losses
Year Observed yield anomaly (%) Hindcasted yield anomaly (%)

1984 25.144 2.52

1985 11.087 4.187

1986 1.338 5.048

1987 0.41 1.201

1988 -29.589 -1.987

1989 29.325 4.822

1990 2.09 5.527

1991 -9.29 0.6

1992 19.979 7.427

1993 -25.745 3.989

1994 33.36 1.1

1995 -20.324 0.607

1996 11.579 6.867

1997 -0.321 0.616

1998 6.325 2.619

1999 -0.497 5.357

2000 2.338 2.386

2001 0.971 3.677

2002 -6.493 -1.845

2003 9.534 5.355

2004 13.288 7.364

2005 -8.615 -0.05

2006 0.768 1.955

2007 1.054 3.816

2008 2.148 6.805

2009 7.143 -2.354

2010 -7.591 7.363

N=27 False N=18 True N=9
Negative (>0.616)
N=20 ��

True negative
0.944 (17/18)

False negative
0.333 (3/9)

Positive (≤0.616)
N=7 ��

False positive
0.056 (1/18)

True positive
0.667 (6/9)
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GDHY1.0 GDHY1.1 GDHY1.2 GDHY1.3
Reference Iizumi et al. (2014) Iizumi & Ramankutty

(2016)
Iizumi et al.
(2018)

In preparation

Period 1982–2006 1981–2011 2000-2016
Resolution 1.125° 0.5�

(0.083/1/2)
0.5�

Crops Maize (major/secondary), soybean, rice (major/secondary), wheat (winter/spring)
Yield
statistics

FAO national yield
statistics

Same as the version 1.0, but errors in earlier version
were fixed (e.g., Democratic Republic of the Congo)

Satellite
products

2nd generation GIMMS
0.073° bi-monthly NDVI
data. The NDVI data
were aggregated to
1.125° using harvested
area maps and then used
to estimate LAI and FPAR
at 1.125° resolution. LAI
and FPAR were used to
derive crop-specific NPP.

3rd generation GIMMS 0.083° bi-
monthly LAI and FPAR data. Crop-
specific NPP at 0.083° resolution
was estimated from LAI and FPAR.

MOD15A2H LAI
and FPAR data (1-
km 8-day
composite data
were processed to
be 0.083�and
daily resolution
data)

Radiation JRA-25 reanalysis JRA-55 reanalysis
Harv. area M3-Crops (Monfreda et al., 2008)
Calendar SAGE (Sacks et al., 2010)
Production
share
by season

USDA (1994)

Improvements to & updates of GDHY datasets
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Advantages
• Yields of a crop for different growing seasons are available. 
• Winter and spring wheat are explicitly separated. 
• The spatial representativeness of grid-cell yields is more consistent 

across grid cells locate within an administrative unit.
• Relatively frequently updated (not regularly, but every 2 years)

Limitations
• No separation is available between irrigated and rainfed conditions.
• GDHY datasets offer estimates of grid-cell yield, but not reported 

(or observed) yields.
• GDHY datasets are largely depend on satellite products, and thus 

grid-cell yield estimates in minor-cropping areas is less reliable than 
those in major-growing areas. 

Advantages and limitations of GDHY datasets
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• A recommended practice is to use subnational (or national) yield 
statistics in addition to GDHY datasets.

• Analyses for a large spatial domain (continental to global) are 
suitable for the application of GDHY datasets.  

• Keep in mind that stating your conclusions in a qualitative manner 
rather than in a quantitative manner to be more robust against 
the uncertainties associated with use of different datasets.

• Good practices are seen:
p Iizumi & Ramankutty, 2016, Environmental Research Letters, 

doi:10.1088/1748-9326/11/3/034003
p Challinor et al., 2016, Nature Climate Change, 

doi:10.1038/nclimate3061
p Schauberger et al., 2017, Global Change Biology, 

https://doi.org/10.1111/gcb.13738

Note for users
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https://doi.org/10.1111/gcb.13738


2013

Yield prediction research at NARO

Found the predictability of seasonal 
climate-induced yield variability for 20% 
of global harvested area (with JAMSTEC)

Provide global maps of ENSO-yield 
relationship (with JAMSTEC)
The 1st global crop forecast information

Developed a prototype of crop forecast 
system at NARO

Detected changes in yield variability 
associated with climate change

Challenge toward more operational crop forecasting (with APCC)

2014

2015

2016

2017
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