Day-2 Afternoon-1 (14:00-15:00): Session-3. Linkage with M-BON (1hr joint session with AP-BON)

By Yamakita & Ando

3.1 Coastal physical data from satellite and assimilation (Aiki)

- 3.2 Coastal biological data from satellite (Ishizaka)
- 3.3 Introduction of AP-MBON and BioDiversity

data (Yamakita)

3.4 Progress and network of Coral research (tentative) (Yamano)

3.5 Discussion

Introduction of AP-MBON and Biodiversity data

T Yamakita (JAMSTEC)

History of AP BON and other network activities

Year	GEOSS AP Symposia	GEO BON	AP BON Meetings	National BONs	CBD COPs	IPBES
2007	1st GEOSS AP					
2008	2nd GEOSS AP	GEO BON Workshop (April, Potsudam)			COP9	
2009	3rd GEOSS AP (Kyoto, February)		1st AP BON (July, Japan) 2nd AP BON (December, Japan)	Japan BON (May)		
2010	4th GEOSS AP (a session, Bali, March)	GEO BON Meeting (February, USA)	3rd AP BON (CBD COP10 Preconference, March, Japan)		COP10 (Japan, Side-event)	
2011			4th AP BON (December, Japan)			
2012	5th GEOSS AP (Tokyo, April)	GEO BON Meeting (December, USA)	WCC of IUCN (September, Korea)	Korea BON, Nepal BON, Bangladesh BON	COP11 (India, Side-event)	
2013	6th GEOSS AP (Ahmedabad, February)		5th AP BON (November, ACB, Philippines)	Philippines BON		Plenary-1
2014	7th GEOSS AP (Tokyo, May)	IC and AB (June, Germany)	6th AP BON (October, NIBR Korea)		COP12 (Korea, Side-event)	Plenary-2
2015	8th GEOSS AP (Beijing, September)	IC and AB (June, Germany)		Sino BON, Indonesia BON		Plenary-3
2016	2016-2025 A New GEO Strategy Plan Initiated	All-Hands Meeting (July, Germany)	7th AP BON (ACB, Thailand) 8th AP BON (Taipei, Taiwan)	WCC of IUCN (September, USA)	COP13 (Mexico)	Plenary-4
2017	9th GEOSS AP (Tokyo, January) 10th GEOSS AP (Hanoi, September)	IC and AB (July, Germany)				Plenary-5
2018	11th GEOSS AP (Tokyo, October)		9th AP BON (Bangkok, February)		COP14 (Egypt)	Plenary-6

7 Key Activities of JapanBON & AP-BON

- Species Recording
- Mapping Biodiversity
- Detect Changes of Biodiversity
- Assessing Risks on Biodiversity
- Prioritizing actions
- Publishing together
- Networking sites / people / institutes / data / communities

S. Nakano · T. Yahara T. Nakashizuka *Editors*

Asia-Pacific Biodiversity Observation Network Integrative Observations and Assessments

🙆 Springer

S. Nakano · T. Yahara T. Nakashizuka *Editors*

The Biodiversity Observation Network in the Asia-Pacific Region

Toward Further Development of Monitoring

🙆 Springer

2012

Ecological Research Monographs

Shin-ichi Nakano · Tetsukazu Yahara Tohru Nakashizuka *Editors*

Asia-Pacific Biodiversity Observation Network Aquatic Biodiversity Conservation and Ecosystem Services

🖄 Springer

2016

Outcomes and Progress of work

- 1. Some BONs are operational at the national and sub-regional levels but there is need to organize more National BONs and organize a network of BONs facilitated by GEOBON
- 2. **Training courses** available through GBIF as funded by BIFA; need to expand to other areas (other parts of Asia and Pacific)

3. Threats to biodiversity identified

- Drivers of Biodiversity Loss
- Drivers of Mangrove Loss
- Drivers of wetland loss
- Anthropogenic actions that hamper achievement of SDGs identified
- **4. Biodiversity databases** established through various accessible platforms such as GBIF, ABCDNET, National CHMs and the ASEAN CHM.

5. Data shared have been used to:

- Monitor various biodiversity for many organisms
- Contribute to global data holdings including such as CForBio
- Increase data paper publications
- Populate databases, contribute to regional platforms (e.g., ABCDNet, GBIF), and prepare distribution maps
- Analyze projects that answer specific questions
- **Conduct** surveys and **Prepare assessments** (e.g., regional mangrove assessment)
- **Develop models** to predict CC impacts, DRR, inform decision making and prepare ecosystem service evaluation
- Develop policies and guidelines

6. Technology is available

- Large coverage high resolution observation technology
- Forest Crane, Drones and LIDAR that facilitate assessments in various ecosystems

Natural Geography In Shore Areas

a Census of Marine Life Ocean Realm Field Project

Focus: soft-bottom seagrass beds and macroalgal covered rocky shore communities.

NaGISA

Achievements:

-DATA has been updated on OBIS, which is over at 27.7 million records & 817datasets. -The DATA supports to analyze of scientists the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists.

-Members have described new species -Parts of protocol was applied in monitoring 1000 long-term national census by the Ministry of the Env. of Japan

Monitoring 1000 and JaLTER

Ecosystems and Indicators

Ecosystem		Sites	Main survey items	Surveyor
	Sandy shore	41	Vegetation, Sea turtle egg-laying	Citizen
	Rocky shore	6	Benthos	Scientist
shore	Tidal flat	144 (10)	Benthos, Sand grains, Shorebirds	Scientist / Citizen
ine	Eelgrass bed	6	Eelgrass vegetation, Benthos	Scientist
Mar	Seaweed bed	6	Seaweed vegetation, Benthos	Scientist
	Coral reef	24	Coral coverage, Crown-of-thorns starfish, Bleaching, substratum turbidity	Scientist
	Small island	30	Vegetation, Seabirds	Scientist

https://www.restec.or.jp/geoss_ap2/pdf/0415/wg3/biodiversity/03.pdf

Program planning to monitor over 100 years conducted by the Ministry of the Env. of Japan

- -Assessing the impact of global climate changes
- -Early detecting the degradation of regional natural environments
- -providing more concrete information to take policy for the conservation and sustainable resource use

-Sampling protocols are partially follow the NAGISA protocol in marine system

AP BON Marine group

S. Vergara (ASEAN Center of Biodiversity)

Past activities of the member of AP-BON EBSA identification trials for Asia region

A Total species number of Cnidaria, Arthropoda, Mollusca, Perciformes, which were recorded only in the study area in OBIS. B Distribution of the Indonesian coelacanth Latimeria menadoensis (Erdmann et al. 1998; Pouyaud et al. 1999). C Nesting sites of six sea turtle species (UNEP-WCMC 1999). D Habitat area of 137 threatened species except corals and long-distant migrators. E Distribution of endangered coral species (Global Distribution of Coral Reefs, WCMC-UNEP, 2010). F Regions significant for the conservation of endangered coral species. Optimal allocation of endangered species was achieved by complementary analyses of 100 times using Marxan. Target for conservation was set 10% of the study area. G Distribution of the giant clam Tridacna gigas. which are slow growth endangered species. H Enclosed coastal seas with <10 cm M2 tidal constituent. (International EMECS Center 2003; Taguchi et al. 2010; Yanagi and Higuchi 1981). Distribution of coral reefs, seagrasses, seaweeds, and mangroves (Ministry of the Environment, Japan 1994; UNEP-WCMC 2005, 2010; USGS 2011). J Chlorophyll density averaged between 2008 and 2012 (NASA). K Expected number of species in 10 individuals (Hurlbert's Index, ES(10)) for all taxa. L Regions with low human impacts, which were estimated by pollution size and other data sets of Halpern et al. (2008).

Sour	ce of records for species occurrence	Years	Records collected
	OBIS	1748~2013	1,120,974
	GBIF	1700~2013	842,569
Database	NaGISA	2002~2010	2,928
	COPEPOD	1974~1981	1,475
	PANGAEA	2005	19,100
	H.M.S. Challenger Expedition	1874~1875	2,375
	Hakuho-Maru Cruise	1972 ~ 2006	15,668
Cruise reports	Snellius-II Expedition	1984~1985	3,319
	Rumphius Biohistorical Expedition	1990	1,989
	Anambas Expedition	2002	2,127
Published papers			23,792
Total count of record	2,036,316		

Yamakita and Sudo et al. EBSAs in East and South East Asia (Marine Policy 2017)

Integration and GAP analysis

Total area of EBSAs became 14.4% of the stu Only 45% of MPAs overlapped with EBSA can

Frank Muller-Karger University of South Florida

Isabel Sousa-Pinto University of Porto

Mark Costello University of Auckland

- 1. Developing an MBON Implementation Plan
- 2. Data Management
- 3. Developing EBVs

[Click on each EOV for their repsective spec sheets]

PHYSICS	BIOGEOCHEMISTRY	BIOLOGY AND ECOSYSTEMS			
Sea state	Oxygen	Phytoplankton biomass and diversity			
Ocean surface stress	Nutrients	Zooplankton biomass and diversity			
Sea ice	Inorganic carbon	Fish abundance and distribution			
Sea surface height	Transient tracers	Marine turtles, birds, mammals abundance and distribution			
Sea surface temperature	Particulate matter	Hard coral cover and composition			
Subsurface temperature	Nitrous oxide	Seagrass cover			
Surface currents	Stable carbon isotopes	Macroalgal canopy cover			
Subsurface currents	Dissolved organic carbon	Mangrove cover			
Sea surface salinity	Ocean colour (Spec Sheet under development)	Microbe biomass and diversity (*emerging)			
Subsurface salinity		Benthic invertebrate abundance and distribution (*emerging)			
Ocean surface heat flux					

J. Emmett Duffy

A Global Collaboration: OBIS + GOOS (IOC) and MBON

e.g.: http://iobis.org/2016/12/15/goosgeobonobis/

				Asking the right questions	INPUT	Drivers Societal needs and international obligations
	PHYSICS <u>Sea state</u>	BIOGEOCHEMISTRY	BIOLOGY AND ECOSYSTEMS Phytoplankton biomass and diversity	r ie die e	SS	Pressures
T	Ocean surface stress	Nutrients	Zooplankton biomass and diversity	Finding answers	PROCE	Existing observing initiatives measuring the state of the marine environment
1.	<u>Sea ice</u>	Inorganic carbon	Fish abundance and distribution			Priority impacts that need monitoring
ac 2. re	<u>Sea surface height</u>	Transient tracers	Marine turtles, birds, mammals abundance and distribution	Initiating solutions	DUTPUT	Response Monitoring information used by society to respond to impacts
3. av	Sea surface temperature	Particulate matter	Hard coral cover and composition			
	Subsurface temperature	Nitrous oxide	Seagrass cover			
	Surface currents	Stable carbon isotopes	Macroalgal canopy cover	LIVING	EC	OSYSTEMS
	Subsurface currents	Dissolved organic carbon	Mangrove cover	and composition		
	Sea surface salinity	<u>Ocean colour</u> (Spec Sheet under development)	Microbe biomass and diversity (*emerging)			
	Subsurface salinity	bsurface salinity Benthic invertebrate abundance and distribution (*emerging)		opy cover		
				-		Microbe biomass and diversity (*emerging)
r	Ocean surface heat flux					
Į						 Benthic invertebrate abundance and distribution (*emerging)

Chaudhary 2016 TREE

Trends in Ecology & Evolution

Project 3: Coastal biodiversity assessment

Revive past activities to Over 100 beserve temporal changes since CoML...

-temporal change?
-improve of the technique (such as DNA & Camera)
-Pole to Pole biodiversity pattern

Use of the information such as

- -ecosystem services-EBSA
- -indicator of the threat

Project 3: Coastal biodiversity assessment

researches and production of

Present data...

-Some are still not good enough

Grayscale

Airphoto

- -Some need temporal data
- Ways to improve -image recognition
- -eDNA
- -survey using drone
- -literature
- ... etc
- Update the maps of seagrasses, algae and coral reefs & build GIS database

Coral reef habitat data in AP region using ALOS/AVNIR2 (National Institute for Environment Studies (NIES) and Asia Air Survey Co., Itd)

More accurate classification of seagrass Yamakita et al. under review

Statement to establish AP-MBON

• SUMMARY

Marine activities in AP-BON have begun. During two 2018 AP-BON workshops, several marine scientists, including the Co-Chair of the global Marine Biodiversity Observation Network (MBON), met and discussed how to develop an AP-marine BON. AP BON is separate from GEO BON in funding, administration and governance, and has its own independent identity and profile. The founding members agreed that the marine group would be called "AP MBON". In this report, we note particular activities that are underway and make the case for a more substantive AP MBON in the future. A first priority to take this forward will be an AP MBON secretariat to lead and coordinate activities.