

Activity Overview 2018

Slides from Pep Canadell Kyoto, Japan; 25 Oct

1-Slide GCP Activity Summary

Global Budgets & Trends CO₂, CH₄, N₂O

Data Release

Tracking Scenarios 1900 3.2-5.4°C by 2100 relative to 1850-1900 CH₄ concentration (ppb) 1850-Observations 2.0-3.7°C 1800 1.7-3.2 1750 0.9-2.3°C unois et al. 2016, ERI lobal Carbon Projec 2005 2008 2011 2014 2017 2020 Year

Publications

Mission Statement

The Global Carbon Project (GCP) integrates knowledge of greenhouse gases for human activities and the Earth system. Our projects include global budgets for three dominant greenhouse gases — carbon dioxide, methane, and nitrous oxide — and complementary efforts in urban, regional, cumulative, and negative emissions.

REgional Carbon Cycle Assessment and Processes-1

REgional Carbon Cycle Assessment and Processes-2

Ciais et al. 2013, IPCC AR5

RECCAP-2 Goals

- 1. Step-increase in constraining regional carbon budgets with multiple model/product ensembles and benchmarking against new data.
- 2. Opportunities to apply data assimilation and Bayesian fusion approaches.
- 3. Complete 3-GHGs Budget (CO₂, CH₄, N₂O)
- 4. Continue to explore the dual constraints from using bottom-up and top-down approaches (atmospheric inversions).
- 5. Bring new process level understanding particularly on:
 - Anthropogenic processes and fluxes affected by human activity (eg, LUC, lateral flows, inland waters)
 - More emphasis on sub-decadal and decadal variaibility, particularly in the oceans
- 6. Aim at the higher spatial resolution, including focusing in single countries when possible

RECCAP-2 Products

- 1. New regional budgets for the three main GHGs (CO2, CH4, N2O)
- 2. New global flux products (eg, fluxnet upscaled, inversions, biospheric modeling, biomass)
- 3. New global flux synthesis products (papers)
- 4. Budget of land-ocean fluxes with new constraints
- 5. Contributions to the global stocktaking of the Paris Agreement (towards net zero GHG emissions).
- 6. Others.

Global Carbon Budget

Earth Syst. Sci. Data, 10, 405–448, 2018 https://doi.org/10.5194/essd-10-405-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

0

Global Carbon Budget 2017

Corinne Le Quéré¹, Robbie M. Andrew², Pierre Friedlingstein³, Stephen Sitch⁴, Julia Pongratz⁵, Andrew C. Manning⁶, Jan Ivar Korsbakken², Glen P. Peters², Josep G. Canadell⁷, Robert B. Jackson⁸, Thomas A. Boden⁹, Pieter P. Tans¹⁰, Oliver D. Andrews¹, Vivek K. Arora¹¹, Dorothee C. E. Bakker⁶, Leticia Barbero^{12,13}, Meike Becker^{14,15}, Richard A. Betts^{16,4}, Laurent Bopp¹⁷, Frédéric Chevallier¹⁸, Louise P. Chini¹⁹, Philippe Ciais¹⁸, Catherine E. Cosca²⁰, Jessica Cross²⁰, Kim Currie²¹, Thomas Gasser²², Ian Harris²³, Judith Hauck²⁴, Vanessa Haverd²⁵, Richard A. Houghton²⁶ Christopher W. Hunt²⁷, George Hurtt¹⁹, Tatiana Ilyina⁵, Atul K. Jain²⁸, Etsushi Kato²⁹, Markus Kautz³⁰, Ralph F. Keeling³¹, Kees Klein Goldewijk^{32,33}, Arne Körtzinger³⁴, Peter Landschützer⁵, Nathalie Lefèvre³⁵, Andrew Lenton^{36,37}, Sebastian Lienert^{38,39}, Ivan Lima⁴⁰ Danica Lombardozzi⁴¹, Nicolas Metzl³⁵, Frank Millero⁴², Pedro M. S. Monteiro⁴³, David R. Munro⁴⁴ Julia E. M. S. Nabel⁵, Shin-ichiro Nakaoka⁴⁵, Yukihiro Nojiri⁴⁵, X. Antonio Padin⁴⁶, Anna Peregon¹⁸, Benjamin Pfeil^{14,15}, Denis Pierrot^{12,13}, Benjamin Poulter^{47,48}, Gregor Rehder⁴⁹, Janet Reimer⁵⁰, Christian Rödenbeck⁵¹, Jörg Schwinger⁵², Roland Séférian⁵³, Ingunn Skjelvan⁵², Benjamin D. Stocker⁵⁴, Hangin Tian⁵⁵, Bronte Tilbrook^{36,37}, Francesco N. Tubiello⁵⁶, Ingrid T. van der Laan-Luijkx⁵⁷, Guido R. van der Werf⁵⁸, Steven van Heuven⁵⁹, Nicolas Viovy¹⁸, Nicolas Vuichard¹⁸, Anthony P. Walker⁶⁰, Andrew J. Watson⁴, Andrew J. Wiltshire¹⁶, Sönke Zaehle⁵¹, and Dan Zhu¹⁸

Global Methane Budget

Earth Syst. Sci. Data, 8, 697–751, 2016 www.earth-syst-sci-data.net/8/697/2016/ doi:10.5194/essd-8-697-2016 © Author(s) 2016. CC Attribution 3.0 License.

The global methane budget 2000–2012

Marielle Saunois¹, Philippe Bousquet¹, Ben Poulter², Anna Peregon¹, Philippe Ciais¹, Josep G. Canadell³, Edward J. Dlugokencky⁴, Giuseppe Etiope⁵, David Bastviken⁶, Sander Houweling^{7,8}, Greet Janssens-Maenhout⁹, Francesco N. Tubiello¹⁰, Simona Castaldi^{11,12,13}, Robert B. Jackson¹⁴, Mihai Alexe⁹, Vivek K. Arora¹⁵, David J. Beerling¹⁶, Peter Bergamaschi⁹, Donald R. Blake¹⁷, Gordon Brailsford¹⁸, Victor Brovkin¹⁹, Lori Bruhwiler⁴, Cyril Crevoisier²⁰, Patrick Crill²¹, Kristofer Covey²², Charles Curry²³, Christian Frankenberg²⁴, Nicola Gedney²⁵, Lena Höglund-Isaksson²⁶, Misa Ishizawa²⁷, Akihiko Ito²⁷, Fortunat Joos²⁸, Heon-Sook Kim²⁷, Thomas Kleinen¹⁹, Paul Krummel²⁹, Jean-François Lamarque³⁰, Ray Langenfelds²⁹, Robin Locatelli¹, Toshinobu Machida²⁷, Shamil Maksyutov²⁷, Kyle C. McDonald³¹, Julia Marshall³², Joe R. Melton³³, Isamu Morino²⁵, Vaishali Naik³⁴, Simon O'Doherty³⁵, Frans-Jan W. Parmentier³⁶, Prabir K. Patra³⁷, Changhui Peng³⁸, Shushi Peng¹, Glen P. Peters³⁹, Isabelle Pison¹, Catherine Prigent⁴⁰, Ronald Prinn⁴¹, Michel Ramonet¹, William J. Riley⁴², Makoto Saito²⁷, Monia Santini¹³, Ronny Schroeder^{31,43}, Isobel J. Simpson¹⁷, Renato Spahni²⁸, Paul Steele²⁹, Atsushi Takizawa⁴⁴, Brett F. Thornton²¹, Hanqin Tian⁴⁵, Yasunori Tohjima²⁷, Nicolas Viovy¹, Apostolos Voulgarakis⁴⁶, Michiel van Weele⁴⁷, Guido R. van der Werf⁴⁸, Ray Weiss⁴⁹, Christine Wiedinmyer³⁰, David J. Wilton¹⁶, Andy Wiltshire⁵⁰, Doug Worthy⁵¹, Debra Wunch⁵², Xiyan Xu⁴², Yukio Yoshida²⁷, Bowen Zhang⁴⁵, Zhen Zhang^{2,53}, and Oiuan Zhu⁵⁴

Global Methane Budget

Ensates in 1gD1, gridewyw

Global N₂O Budget: Components

Top-down assessment Atmospheric observations & modeling (Lead: R. Thompson; Michael Prather) Terrestrial biosphere modeling Emissions from agricultural and natural soils (Lead: Hangin Tian)

Inventory-based estimates Emissions from agriculture, industry, waste, and fuel & biomass combustion (Lead: Wilfried Winiwarter)

Inland water system models and observations Emissions from rivers, reservoirs, and lakes (Lead: Pete Raymond & Pierre Regnier)

Ocean biogeochemistry models and observations Fluxes in the coastal and open ocean (Lead: Parv Suntharalingam, Pierre Regnier)

> Integration and Uncertainty (Lead: H. Tian and R. Thompson)

GCP Activity Schedule

- 1. 12th Global Carbon Budget: November 2018
- 2. First Global N2O Budget: February-March 2019
- 3. Third Methane Budget: March-May 2019
- 4. RECCAP-2: 2018-2023 (First Global Stocktake 2023)
- 5. First All RECCAP-2 Meeting: March 2019, Japan