

CLIMATE

ACTION

RESPONSIBLE CONSUMPTION AND PRODUCTION

Satellite data based transparent MRV system of GHGs emission from Asian agricultural ecosystems

Hironori Arai^{1,3)}, Wataru Takeuchi¹⁾, Kei Oyoshi²⁾, Lam Dao Nguyen⁴⁾, Towa Tachibana⁵⁾, Ryuta Uozumi, Koji Terasaki³⁾, Takemasa Miyoshi³⁾, Hisashi Yashiro³⁾, Kazuyuki Inubushi⁵⁾

() IAXA

IPCC Methodologis

Tier 1

- Simplest method
- Activity data available to all countries

Tier 2

Technology-specific emission factor

Tier 3

More detailed or country-specific methods

From IPCC methodologies and reporting principles by Kristin Rypdal, CICERO & IPCC author

Each country must submit INDC (Intended Nationally Determined Contributions) to UNFCCC before 2020

Outline

- 1. Background & Objective
- 2. Ground observation of greenhouse gas emission and semi-empirical modeling
- **3. Satellite remote sensing of GHG emitters**
 - Cropping calendar & the adjacent fallow length
 - Paddy soil/water covered by rice plants
 - Top down verification with GOSAT

 Continuously flooded nearly through a year
 +

High straw production

 Anaerobic stress for rice production
 High GHGs emission

- (Alternate Wetting and Drying)
- Irrigation-water saving
 Anaerobic-stress mitigation
 GHGs mitigation

Characteristics of the Mekong delta

Characteristics of the Mekong delta

- Reduction of irrigation rate & GHGs (2012-2016)

- Increase of rice grains and its quality

Flow chart

Outline

- 1. Background & Objective
- 2. Ground observation of greenhouse gas emission and semi-empirical modeling
- 3. Satellite remote sensing of GHG emitters
 - Cropping calendar & the adjacent fallow length
 - Paddy soil/water covered by rice plants
 - Top down verification with GOSAT

IPCC guideline (Tier1) [Emission factor × Scaling factor in IPCC guideline]

Cropping calendar evaluation with MODIS-NDVI (LMF-KF) for GCOM-C

Arai et al., 2018

Semi-empirical daily CH₄ flux (mg C m⁻² hr⁻¹) Model

-Freeman-Durden decomposition-

SCANSAR (intensity - $HH\sigma^{0}$)

Dry season (2015 Apr. 10)

Flooding season (2015 Oct. 23)

Double bounce detection by SCANSAR (intensity - HH σ^{0})

Dry season (2015 Apr. 10)

Flooding season (2015 Oct. 30) -LANDSAT-8-

Flooding season (2015 Oct. 23)

Rainy season (2015 Jul. 03)

17

Full-polarimetry (3m)

SCAN-SAR (25m)

Floodability analysis

(Cumulative LSWC/ observation scenes)

Daily ALOS2-LandSurfaceWaterCoverage estimation with floodability, GCOM-W & GCOM-C (MODIS)

= $(ALOS2floodability*\omega + \zeta)* \exp(AMSRNDFI*\delta-MODISLSVC*\delta)$

Estimated daily ALOS2-LSWC (10km-res.)

Estimate daily CH₄ emission with sowing date data and paddy-mask (MODIS, GCOM-C) (250m res., 2002-) With GOSAT!

Inverse estimation of the emission using NICAM-TM(Chem)-LETKF with AMSU, PREPBUFR and GOSAT data

"Variable localization" in an ensemble Kalman filter: Application to the carbon cycle data assimilation

Ji-Sun Kang,¹ Eugenia Kalnay,¹ Junjie Liu,² Inez Fung,² Takemasa Miyoshi,¹ and Kayo Ide¹

- Flux estimation from atmospheric concentration by omitting multi-collinearity
- No direct emission or apriori info. is required!

Transparent MRV!!

Back ground covariance matrices

Thank you for your attention

©JAXA