Inverse modelling of CO_2 , CH_4 and N_2O using JAMSTEC's MIROC4-ACTM

Prabir K Patra and colleagues

25 October 2018 Kyoto, Japan

Introduction

- Global stocktaking of greenhouse gases emissions is scheduled for the early 2020s
 - Each country will report their progress towards the Nationally Determined Contributions
 - Independent estimation is likely to come from the regional and global inversion of atmospheric observations
- Inverse modelling of CO₂ using MIROC4-ACTM (1998-2017)
 - Comparisons with some other results, as our inversion is almost entirely data driven
 - Contribution to Global Carbon Budget (LeQuere et al., 2018, ESSD, in review)
 - Contribution to TransCom-HIPPO (Gaubert et al., in review)
- Inverse modelling of CH₄ and N₂O using MIROC4-ACTM
 - Explanation of the CH₄ growth rate anomaly in the past 3 decades
 - Attribution of emissions to anthropogenic and natural emission processes
- Use of satellite remote sensing data of atmospheric column CO₂ and CH₄
 - Rapid progress in the recent years
 - Extremely promising for refining sources and sinks estimate by the surface network

Inverse modelling of CO₂: TransCom experiment and modificaion

Development of MIROC4-ACTM: transport validation using age of air and SF₆

(SF₆ is a dielectric material with no known loss in the troposphere and stratosphere, but some loss in the mesosphere affect polar stratospheric data)

But in the polar stratosphere......

MIROC4-ACTM SF₆ agree quite well with observations, compared to AGCM57b-ACTM

Ray et al., 2017 (CO₂ age of air); Patra et al., revised, SOLA

Observations : GMD/NOAA (Daube et al., 2002); NIPR/Tohoku Univ (Goto et al, 2017)

CO2 INVERSION RESULTS

MIROC4-ACTM inversion (TDI84_2017) : global totals

... further analysed by GCP-CO₂, Budget 2018

See also: Saeki and Patra, GOSL, 2017

Current understanding (IPCC-2013)

Large increase in data coverage in satellite remote sensing era

We also achieved improved simulations of XCO₂ within 1 ppm by global (and regional) chemistry-transport models

Zonal gradients for latitude band: Is North America sink overestimated?

Evaluation of inversion fluxes using aircraft data

GCB2018, Le Quéré et al., ESSD, in review, 2018

TransCom like, Gaubert et al. BG, in review, 2018

CH4 INVERSION RESULTS

CH₄ emission trends and variability: Validation using Tohoku Univ. data over Sendai

CH₄ inversion: application to anthropogenic CO₂ emission

China alone drives the East Asian emission increase. Mostly from coal industry.

Increase rate of inverted CH₄ emissions are 22% (9 Tg) lower than that of EDGAR2012FT inventory

Ratio of slopes 1.53/2.61 = 0.59

We estimated a scaling factor of **0.59** to FFC CO₂ emission "increase rate" for the period 2003-2014, relative to the emissions for 2002 from the inventory emissions.

Updates in China CH₄ emission: perspective for FF CO₂ emission

We recommend a scaling factor to FFC CO₂ emission "increase rate", based on CH4 inversion results

N20 INVERSION RESULTS

Modelling N₂O: emissions using EDGARv42FT, Soil (2), Ocean (2)

N₂O inversion fluxes (RGO) in comparison with the prior (blue)

Interesting differences between emission variabilities and concentration growth rates (due to the effects of transport in troposphere and the stratospheretroposphere exchange)

N₂O growth rate plot by: Kentaro Ishijima

Atmospheric N₂O growth rates, compared between GCP inversions

Conclusions

- Investment in developing the model physics is key to interpret the atmospheric concentration measurements
- It encouraging that the 40+ sites and model can simulate the global XCO₂ data, generally within the observational uncertainty
 - A data-rich era for CO₂ has arrived due to JAL/NIES CONTRAIL, HIPPO, GOSAT, OCO2
- CH₄ inversion clearly identified the problems in the China inventory emissions and a closer agreement is now achieved, but further work is needed
- Emissions of N₂O from anthropogenic sector continued to increase, but the bottom-up estimations do not fully explain the observed concentration variabilities

Thank you

MIROC4-ACTM inversion (TDI84_2017) : hemispheric totals

Latitude bands: SH > 30S; 30S > TR < 30N; NH > 30N

MIROC4-ACTM inversion (TDI84_2017) : hemispheric totals

Evolution of JAMSTEC's inversion (2003-2018) : the cases of El Ninos

Global carbon budget 2018: inversions

	CAMS	CarboScope	CTE	MIROC
Time period	1979-2017	1980-2017	2001-2017	1996-2017
Transport	LMDZ v5A	TM3	TM5	MIROC4-ACTM
Meteorology	ECMWF	NCEP	ECMWF	JRA55
Resolution (degrees)	Glb3.75x1.875	Glb4x5	Glb3x2, eur1x1, nam1x1	Glb2.8x2.8
Fossil fuels	EDGAR scaled to CDIAC	CDIAC	EDGAR+IER, scaled to CDIAC	EDGARv432
Biosphere and fires	ORCHIDEE (clim)+GFEDv4+GFAS	Zero	SiBCASA-GFED4	CASA (climatological)
Ocean	Landschu tzer et al. (2015)	pCO ₂ based product oc_v1.6 (Rödenbeck et al. 2014)	Jacobson et al. (2007) Ocean Inversion Fluxes (OIF)	Takahashi et al. (2009)
Observations	Daily averages well- mixed cond. GVP3.2, NRT4.2, WDGCC, RAMCES, ICOS	Flask and hourly	Hourly resolution well- mixed cond. GVP3.2, NRT4.2.	Flask and continuous, GVP3.2, GVP4.0
Optimization	Variational	Conjugate Gradient (re-ortho-normalization)	Ensemble Kalman Filter	Matrix method, 84 regions

Global carbon budget 2018: inversions

LSCE(R) MACTM(BGCY) Mean Flux: 2010-2015 (PgC/yr)

Land regions: MIROC4-ACTM sensitivity runs (for varying a priori uncertainty) compared with LSCE inversion

Control (L=1.0, O=0.5 PgC) HiLnd (L=2.0, O=0.5 PgC) HiOcn (L=2.0, O=1.0 PgC) CONTRAIL (L=1.0Pg, O=0.5)

Analysis by: Kenji Ono

CO₂ and CH₄ emission (covariation)

2000

1600

1200

800

400

Major CO2 emission sectors (TgC/yr)

- A good linearity between anthropogenic emission inventories of CO₂ and CH₄ over the period of 1970s -2012 (EDGAR4.x)
- The main driver for CO₂ and CH₄ emission increases is the coal mining and burning in China
- Linearity arises from the constant emission factors used for each of the emission processes ??

Major CH4 emission sectors (TgCH4/yr)

Notes

- Ms. Naoko Okamura, MEXT
- Mr. Takashi Matsuo, ADB established in 1966, 20 b\$
- Special session 1: Cross over issues of Data sharing, AO-DataCube (TG10 & TG11), User engagement and communication (TG12)
 - Qinhuo Liu (RADI, CAS)