

Oceanic Carbon Cycle Observations in JAMSTEC

Akihiko Murata (RCGC/JAMSTEC)

At 11th GEOSS Asia-Pacific Symposium, Kyoto, Japan, 24 Oct. 2018

- 1. Atmospheric and surface seawater pCO₂ measurements
- 2. Anthropogenic CO₂ storage in the ocean interior
- 3. Further investigation

0. Research vessels and a scientific program

Const. 1997 · Scientist 22、Crew 38 Length 106m · Draft 4.7m

Const. 2015 · Scientist 38、Crew 27 Length 100m · Draft 6.0m

➢ R/V Mirai

Scientist 46 Crew 34

> Sampling for anthropogenic CO₂ storage in the ocean interior

Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP)

GO-SHIP cruise by the R/V *Mirai*

Fig. 1. CTD observations, water sampling, and chemical analyses on board the R/V Mirai.

CTD/Water sampling

Temperature (T), Salinity (S), Dissolved oxygen (DO), Nutrients, Dissolved inorganic carbon, Total alkalinity, pH, Density, Chl-a, Colored dissolved organic matters, CFC S (CFC-11, CFC-12, CFC-113), SF₆, ¹³C, ¹⁴C, ¹³⁴C_s, ¹³⁷C_s, ¹⁸O, LADCP

Continuous surface observations

T, S, DO, pCO₂

Deployment of Argo floats

Fig. 2. Lists of main observation items

GO-SHIP cruise by the R/V *Mirai*

1. Atmospheric and surface seawater pCO₂ measurements

Shipboard CO₂ observations by the R/V Mirai

 $\Delta p \text{CO}_2$ in the Indian and western Pacific sectors of Southern Ocean

Shipboard CO_2 observations by the R/V *Mirai* ΔpCO_2 in the North Pacific

Shipboard CO₂ observations by the R/V Mirai ΔpCO_2 in the eastern Indian and western Pacific Oceans

CO₂ data obtained by the R/V *Mirai* (1998-2015)

SOCAT database (https://www.socat.info/)

 pCO_2 data obtained by the R/V Mirai are submitted to Surface Ocean CO_2 Atlas (SOCAT) database.

Net annual Arctic Ocean CO_2 uptake = 180 \pm 130 TgC yr⁻¹ (Yasunaka et al., 2018; Biogeosciences, doi:10.5194/bg-15-1643-2018)

2. Anthropogenic CO₂ storage in the ocean interior

Anthropogenic CO₂

= dissolved inorganic carbon (DIC) – natural CO_2

Measurable

Estimation from other properties

 \cong f(Salinity, DO, Nutrients, Alkalinity ...)

DIC measuring system on board the R/V *Mirai*

\succ Anthropogenic CO₂ storage in the Southern Ocean

Large increases of anthropogenic CO_2 were found in Antarctic Bottom Water (AABW), previously considered a small sink of anthropogenic CO_2 .

The *Mirai*'s data are submitted to Global Ocean Data Analysis Project (GLODAP) for 2nd QC.

Decadal-scale increases of anthropogenic CO_2 in the ocean (Kouketsu et al., 2014, GRL, doi:10.1002/2014GL060516)

➢ GO-SHIP cruise in the Indian Ocean (2019/2020)

CTD/Water sampling

Temperature (T), Salinity (S), Dissolved oxygen (DO), Nutrients, Dissolved inorganic carbon, Total alkalinity, pH, Density, Chl-a, Colored dissolved organic matters, CFC s (CFC-11, CFC-12, CFC-113), SF₆, ¹³C, ¹⁴C, ¹³⁴C_s, ¹³⁷C_s, ¹⁸O, LADCP **Continuous surface observations** T, S, DO, pCO_2 **Deployment of Argo floats**

We are conducting pCO₂ and anthropogenic CO₂ observations under international frameworks.

Enough for sink and source estimation?

There are still large areas with few or no data!

Sink and source estimation in the ocean still includes large uncertainties.

From https://www.socat.info/

3. Further investigation

3.1 Deployment of autonomous platforms

Deployment of drifting CO₂ buoy

There is a large area with few or no pCO₂ data in the South Pacific

A drifting buoy in its cloth cradle.

Deployment of a drifting buoy from the R/V *Mirai*. Left: the drifting buoy is lowered from the stern in its cradle. Middle: the cradle is tilted, releasing the drifting buoy so that it drops onto the sea surface. Right: a drifting buoy just after deployment.

Deployment of Biogeochemical (BGC) floats

Downwellin

- Downwelling irradiance (70) pH (117)
- Chlorophyll a (208)
 Oxygen (333)
- Oxygen (333)

Generated by www.jcommops.org, 03/10/2018

3. Further investigation

3.2 Observation in coastal areas

Continental shelf seas are not well evaluated yet for CO₂ sink and source activities.

Distributions of continental shelf seas from SOCAT ver.2. (Laruelle et al., 2014, doi:10.1002/2014GB004832)

Coastal ocean monitoring -An example in Tsugaru Strait-

Measurement items:

Water temperature, Salinity, Dissolved oxygen Total alkalinity, Nutrients, Water isotope, Total organic carbon, Total dissolved nitrogen, Chlorophyll a, Phytoplankton identification

Bucket sampling

CTD sensors

NORPAC net

Summary

- In JAMSTEC, observations of oceanic carbon cycle are conducted mainly by the R/V *Mirai*;
- The observations are made under international frameworks, e.g., GO-SHIP;
- Atmospheric and surface seawater pCO₂ are measured for the estimation of air-sea flux of CO₂;
- DIC and related properties are measured for the estimation of anthropogenic CO₂ storage;

- Autonomous platforms, e.g., drifting buoys, BGC ARGO, etc. are used for improving uncertainty of CO₂ sink and source estimation in open ocean;
- Costal ocean observations are also conducted for a better estimation of CO₂ source and sink.