

Identification of Crop Calendar Using Satellite Data for Evaluation of Irrigation Project by JICA

Kei Oyoshi, Shinichi Sobue

Japan Aerospace Exploration Agency (JAXA)

11th AOEOGSS Asia Pacific Sympodium

@Kyoto, Japan24-26 October 2018

Asia-RiCE: Agriculture-Related Products

ID	Product
P1	Rice Planted Area Estimates and Mapping
P2	Crop Calendars/Crop Growth Status
Р3	Crop Damage Assessment
P4	Agro-meteorological Information Products
P5	Yeild/Production Estimation and Forecasting

Product Examples

P3: Crop Damage

P4: Precipitation

Crop Calendar

- Basic information for input data to crop models for estimating/forecasting crop yields
- Includes cropping intensity, planting date, and harvesting date etc.
- However, no adequate data of time-series and detailed crop calendar
- Satellite-based observation can contributed to develop timely and detailed crop calendar.

Rice Planting Date for 2nd Crop

[Sacks et al. GEB, 2010]

Utilization of Crop Calendar in JICA Irrigation Project

- Irrigation project improves local water resource availability.
- Evaluation indicators for irrigation project
 - cropping area, crop intensity, crop species etc.
- Indicators should have consistency before and after the project
 - Official statistical data availability (past data) and reliability
 - Statistics data are accumulated with administrative boundary, difficult to identify the effect only with in the target area
- Collecting indicators in the project needs a lot of cost and labor

Satellite observation is expected to collect indicators for agricultural development project evaluations.

Crop Calendar Identification from Time-series NDVI

Chao Phraya River Basin, Thailand

Time-series NDVI (MOD13Q1)

High-frequent observation data are useful to identify crop calendars.

Crop Calendar Estimation using Spectrum Analysis

• Applying Discrete Fourier Transform (DFT) to time-series Vegetation Index

Fourier
$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j \frac{2\pi}{N} k n}$$

Frequency with highest spectrum would be crop intensity of each pixel.

Crop Calendar in West Bago Region, Myanmar

Comparison with Existing Irrigation Map

Crop Intensity (2011)

95.20 95.40 95.60 95.80 96.00 19.20 19.20 19.00 18.80 18.80 18.60 Legend 18.40 Crop Intensity 95.20 95.40 95.60 95.80 96.00

Irrigation Map (JICA)

%Pink: Irrigation Area

Identification of Changes in Crop Calendar

Study Area

- Rajasthan, India
- Minor irrigation improvement project (2005-2015)
- Widely distributed

Satellite data

 MODIS 16-day composite data (MOD13Q1)

Output Data

 Crop calendar (before/after the project)

Identification of Cropping Intensity Changed Area

• Changed area are identified from the crop calendar in 2002 to 2004 and 2014 to 2016.

Crop intensity identification by spectrum analysis

Cropping Intensity Change (single to double) (2002-2004 vs 2014-2016)

Output Data Utilized in JICA

 JICA utilized output data in efficient site selections for field survey to confirm the project effect over huge study area (800 x 500km).

KML format

CSV format (changed areas in sub-district unit)

Summary

- Time-series and local-scale crop calendar developed from satellite data can capture the improvement of water resource availability by irrigation project.
- JICA and JAXA have collaboration to utilize satellite-based observation data for the evaluation of irrigation project.
- Crop calendar created from time-series NDVI data were utilized in JICA irrigation project to select the sites for site survey and JICA confirmed that the data can support efficient site selections.
- JICA-JAXA new collaboration has been started for planted-area and crop calendar mapping using every 14-day observation ALOS-2 data with 6m spatial resolution towards ALOS-4 utilization for irrigation project evaluations.

Thank you very much for your attention.

ohyoshi.kei@jaxa.jp

@Tsuruoka, Yamagata Pref.
TDS Site in Japan

